• 제목/요약/키워드: Overturn of density

검색결과 6건 처리시간 0.021초

직사각형용기내 물의 자연대류현상에 관한 수치해석 (Numerical Analysis on Natural Convection of Water in a Rectangular Vessel)

  • 김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.299-305
    • /
    • 2008
  • This present study has dealt with the natural convection of water in a rectangular vessel which has cooling point at the center of itself with numerically. The finite difference method (FDM) is presented for the two-dimensional computer simulation of water controlled by natural convection and heat conduction. According to this study, It is cleared that the overturn of density is clearly existed at the temperature of $4[^{\circ}C]$ and that was compared with experimental result. Also the change of natural convection is known from the streamlines and isotherms. Most of all. It is cleared that the overturn of natural convection is changed with time caused by the fact that the temperature and density relationship of water.

동해 남서부 해역의 대륙사면에서 Thorpe 규모(scale)를 이용한 연직 난류 확산계수 추정 (Thorpe Scale Analysis using CTD Observations on the Continental Slope of the Southwestern East Sea)

  • 서성봉;박영규;박재훈;정희동
    • Ocean and Polar Research
    • /
    • 제37권2호
    • /
    • pp.107-117
    • /
    • 2015
  • Thorpe scale analysis was performed using two sets of 25-hour-long hourly CTD data. Raw density profiles collected on the continental slope of the southwestern East Sea were post-processed to reduce instrument noises and measurement errors. Density inversions were detected by applying the overturn ratio test proposed by Gargett and Garner (2008). The value of $K_z$ below the main thermocline estimated with the Osborn parameterization was $5.3{\times}10^{-4}(1.1{\times}10^{-4})m^2s^{-1}$ and that with the Shih parameterization was $5.9{\times}10^{-5}(2.4{\times}10^{-5})m^2s^{-1}$during the spring (neap) tidal period. This result suggests that internal tides can enhance vertical mixing in the observation region.

인공호에서 수온의 수직분포와 수층혼합의 계절적 변화 및 중층수 유입 현상의 영향 (Seasonal Patterns of Reservoir Thermal Structure and Water Column Mixis and Their Modifications by Interflow Current)

  • 안광국
    • 생태와환경
    • /
    • 제34권1호통권93호
    • /
    • pp.9-19
    • /
    • 2001
  • 본 연구는 1993년 4월부터 1994년 11월까지 대청호 17개 조사지점에서 수온 성충 및 수체 혼합 현상을 평가하였다. 조사기간 동안 하절기 장마 강도의 차이는 뚜렷한 수리 수문학적 연 변화를 가져왔다. 1993년 하절기에 이론적 평균 수체류 시간은 27일로서, 1994년 하절기 (125일)에 비해 3개월 이상 짧았다. 1993년에 수온 성층화와 수층혼합 정도를 조절하는 중요한 물리적 요인은 밀도가 높은 중층수 유입현상(Interflow current)에 의한 것으로 평가되었다. 1993년 하절기동안 상류 유입수는 호수 중류역 (댐으로 부터 27km 부근)에서 수직 하강되어 10${\sim}$20 m 수층을 통과함으로써 표충수인 호수물과는 혼합되지않는 현상을 보였다. 중층수 유입은 수온 성층화 현상의 약화, 하류역의 중층-심층에서 평균 $4^{\circ}C$ 이상의 온도상승 효과 및 13 m 이상의 수층혼합을 가져왔다. 전자와 비교해볼 때, 1994년 하절기 중층수 유입현상은 관측되지 않았으며, 호수전체에 강한 성층이 형성되고 있음을 보였다. 1993년 온도 저항력 (Thermal resistance)은 $4.0\;{\time}\;10^5\;erg$로서, 1994년의 값($8.2\;{\time}\;10^5\;erg$)에 비해 절반 수준을 보임으로서, 수체의 물리적 불안정 상태를 시사하였다. 본 호수는 연중 겨울에 1회 수층혼합을 보이는 Warm monomixis 특성을 보였으나, 두해 사이의 수충혼합 시기는 차이를 보였다. 1993년 수층혼합은 1994년에 비해 약 1개월 일찍 일어났다. 하절기 동안 심충 수온 변화(Y)는 댐으로부터의 방류량(X)에 의해 98%까지 설명되었다($Y=4.35-0.06X+0.10X^2$, f<0.0001), 총체적으로 본 수체에서 수온 안정성, 수층혼합 시기 및 수 체류시간은 1차적으로 하절기 몬순 강도에 의해 조절되는 것으로 사료된다.

  • PDF

Application of CE-QUAL-W2 [v3.2] to Andong Reservoir: Part I: Simulations of Hydro-thermal Dynamics, Dissolved Oxygen and Density Current

  • Bhattarai, Prasid Ram;Kim, Yoon-Hee;Heo, Woo-Myoung
    • 생태와환경
    • /
    • 제41권2호
    • /
    • pp.247-263
    • /
    • 2008
  • A two-dimensional (2D) reservoir hydrodynamics and water quality model, CE-QUAL-W2, is employed to simulate the hydrothermal behavior and density current regime in Andong Reservoir. Observed data used for model forcing and calibration includes: surface water level, water temperature, dissolved oxygen and suspended solids concentration. The model was calibrated to the year of 2003 and verified with continuous run from 2000 till 2004. Without major adjustments, the model accurately simulated surface water levels including the events of large storm. Deep-water reservoirs, like Andong Reservoir, located in the Asian Monsoon region begin to stratify in summer and overturn in fall. This mixing pattern as well as the descending thermocline, onset and duration of stratification and timing of turnover phenomenon were well reproduced by the Andong Model. The temperature field and distinct thermocline are simulated to within $2^{\circ}C$ of observed data. The model performed well in simulating not only the dissolved oxygen profiles but also the metalimnetic dissolved minima phenomenon, a common1y occurring phenomenon in deep reservoirs of temperate regions. The Root Mean Square Error (RMSE) values of model calibration for surface water elevation, temperature and dissolved oxygen were 0.0095 m, $1.82^{\circ}C$, and $1.13\;mg\;L^{-1}$, respectively. The turbid storm runoff, during the summer monsoon, formed an intermediate layer of about 15 m thickness, moved along the metalimnion until being finally discharged from the dam. This mode of transport of density current, a common characteristic of various other large reservoirs in the Asian summer monsoon region, was well tracked by the model.

섬바디의 건조에 관한 연구 (Study on Seombody Drying)

  • 박경규;정창주
    • Journal of Biosystems Engineering
    • /
    • 제1권1호
    • /
    • pp.55-55
    • /
    • 1976
  • An experimental work was conducted to develop an optimum operating system of various hay drying systems ; sun-drying with long hay, sun-drying after chopping, sun-drying after crushing, heated air drying after chopping using batch-type dryer and heated air drying after crushing using tunnel-type dryer. Seombody having 60 cm long and initial moisture content of approximately 79 % in wet basis was used for the experiment. The criteria selected for determining the optimum operating condition were the drying performance rate, the production cost and quality of dried matter of each drying systems. The result of this study are summarized as follows : 1. Drying characteristics of leaves of long stem hay, chopped seombody and crushed one were obtained by maintaining the oven temperature at 70 degrees centigrade. The required drying times for various samples to approximately 15% moisture content in wet basis were about 50 min .for leaves ; 160 min. for crushed hay ; 250 min. for chopped hay ; 340min. for ling hay and more than 360 min .for stems. The drying time of crushed hay was required about 50 % of that for the uncrushed long hay. Such a significant difference of drying of time between the leaf and long stem may indicate that an effective drying of seombody may not be achieved unless any kind of special process treatment for the whole hay is undertaken. 2. In each individual drying system, the following conclusions were drawn: a. After 8 days sun-drying on concrete floor under good days with average tempe?rature at $256{\circ}C$ and relative humidity at 55% at 2 P.M., the moisture content of long hay was still above 25 5'~ and the leaf loss during drying caused by wind and rough handling was more than 50 ~G. b. It was possible to dry the chopped seombody by sun-drying down to about 10 % moisture content within 5 days, however, a stock of heat and discolouration phenomena were observed during the drying, which may be due to the increased deposit-density by chopping, resulting in lowering the quality of the dried product. c. Sun-drying for the crushed material by hay-conditioner was required about 4 days to reduce the moisture content to about 10 %, keeping the quality of dried product at good grade. o. The optimum deposit-depth of the chopped seombody in the batch-type dryer used was about 28cm with about 42kg/hr of drying performance rate. However, it was necessary to overturn the materials between the upper and lower layers in order to obtain a good quality of dried product. d. The drying performance rate by the tunnel-type drier was highest among those of drying systems tested, giving the rate of approximately 400kg/day. 3. On reviewing the individual drying system for seombody, it was possible to draw conclusion that the best system was tunnel drying with the crushed seombody as far as the performance rate was concerned. However, the methods gives the highest operational cost. The system for the lowest operational cost with good quality of dried product was the sun-drying with the crushed material. Accordingly, it may be recommended that the system of sun-drying for the crushed seombody may be the most feasible system presently applicable to farm-level operation.

섬바디의 건조에 관한 연구 (Study on Seombody Drying)

  • 박경규
    • Journal of Biosystems Engineering
    • /
    • 제1권1호
    • /
    • pp.56-63
    • /
    • 1976
  • An experimental work was conducted to develop an optimum operating system of various hay drying systems ; sun-drying with long hay, sun-drying after chopping, sun-drying after crushing, heated air drying after chopping using batch-type dryer and heated air drying after crushing using tunnel-type dryer. Seombody having 60 cm long and initial moisture content of approximately 79 % in wet basis was used for the experiment. The criteria selected for determining the optimum operating condition were the drying performance rate, the production cost and quality of dried matter of each drying systems. The result of this study are summarized as follows : 1. Drying characteristics of leaves of long stem hay, chopped seombody and crushed one were obtained by maintaining the oven temperature at 70 degrees centigrade. The required drying times for various samples to approximately 15% moisture content in wet basis were about 50 min .for leaves ; 160 min. for crushed hay ; 250 min. for chopped hay ; 340min. for ling hay and more than 360 min .for stems. The drying time of crushed hay was required about 50 % of that for the uncrushed long hay. Such a significant difference of drying of time between the leaf and long stem may indicate that an effective drying of seombody may not be achieved unless any kind of special process treatment for the whole hay is undertaken. 2. In each individual drying system, the following conclusions were drawn: a. After 8 days sun-drying on concrete floor under good days with average tempe\ulcornerrature at $256{\circ}C$ and relative humidity at 55% at 2 P.M., the moisture content of long hay was still above 25 5'~ and the leaf loss during drying caused by wind and rough handling was more than 50 ~G. b. It was possible to dry the chopped seombody by sun-drying down to about 10 % moisture content within 5 days, however, a stock of heat and discolouration phenomena were observed during the drying, which may be due to the increased deposit-density by chopping, resulting in lowering the quality of the dried product. c. Sun-drying for the crushed material by hay-conditioner was required about 4 days to reduce the moisture content to about 10 %, keeping the quality of dried product at good grade. o. The optimum deposit-depth of the chopped seombody in the batch-type dryer used was about 28cm with about 42kg/hr of drying performance rate. However, it was necessary to overturn the materials between the upper and lower layers in order to obtain a good quality of dried product. d. The drying performance rate by the tunnel-type drier was highest among those of drying systems tested, giving the rate of approximately 400kg/day. 3. On reviewing the individual drying system for seombody, it was possible to draw conclusion that the best system was tunnel drying with the crushed seombody as far as the performance rate was concerned. However, the methods gives the highest operational cost. The system for the lowest operational cost with good quality of dried product was the sun-drying with the crushed material. Accordingly, it may be recommended that the system of sun-drying for the crushed seombody may be the most feasible system presently applicable to farm-level operation.

  • PDF