Browse > Article
http://dx.doi.org/10.4217/OPR.2015.37.2.107

Thorpe Scale Analysis using CTD Observations on the Continental Slope of the Southwestern East Sea  

Seo, Seongbong (Physical Oceanography Division, KIOST)
Park, Young-Gyu (Physical Oceanography Division, KIOST)
Park, Jae-Hun (Physical Oceanography Division, KIOST)
Jeong, Hee-Dong (Fisheries Resources and Environment Division, East Sea Fisheries Research Institute, NFRDI)
Publication Information
Ocean and Polar Research / v.37, no.2, 2015 , pp. 107-117 More about this Journal
Abstract
Thorpe scale analysis was performed using two sets of 25-hour-long hourly CTD data. Raw density profiles collected on the continental slope of the southwestern East Sea were post-processed to reduce instrument noises and measurement errors. Density inversions were detected by applying the overturn ratio test proposed by Gargett and Garner (2008). The value of $K_z$ below the main thermocline estimated with the Osborn parameterization was $5.3{\times}10^{-4}(1.1{\times}10^{-4})m^2s^{-1}$ and that with the Shih parameterization was $5.9{\times}10^{-5}(2.4{\times}10^{-5})m^2s^{-1}$during the spring (neap) tidal period. This result suggests that internal tides can enhance vertical mixing in the observation region.
Keywords
Thorpe scale; vertical diffusivity; East Sea; internal tides;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 최아라, 박영규, 민홍식, 김경홍 (2009) 후처리과정을 통한 CTD 관측 자료 품질 개선에 대하여. Ocean Polar Res 31(4):339-347(Choi A-R, Park Y-G, Min HS, Kim K-H (2009) The Improvement of CTD Data through Post Processing. Ocean Polar Res 31(4):339-347)   DOI
2 Alford M, Pinkel R (2000) Observations of overturning in the thermocline: the context of ocean mixing. J Phys Oceanogr 30:805-832   DOI
3 Dilon TM (1982) Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J Phys Oceanogr 87:9601-9613
4 Galbraith PS, Kelley DE (1996) Identifying overturns in CTD profiles. J Atmos Oceanic Technol 13:688-702   DOI
5 Gregg MC (1987) Diapycnal mixing in a thermocline: a review. J Geophys Res 92:5249-5286   DOI
6 Gregg MC (1989) Scaling turbulent dissipation in the thermocline, J Geophys Res 94:9686-9698   DOI
7 Johnson HL, Garret C (2004) Effects of noise on Thorpe scales and run lengths. J Phys Oceanogr 34(11):2359-2372   DOI
8 Kioroglou S, Tragou E, Zervakis V (2013) Assessing shelf mixing using CTD, ADCP, and free falling shear probe turbulence data. Cont Shelf Res 69:73-87   DOI
9 Kitade Y, Yoshida J, Matsuyama M (2003) Distribution of overturn induced by internal tides and Thorpe scale in Uchiura Bay. J Oceanogr 59:845-850   DOI
10 Lueck RG, Wolk F, Yamazaki H (2002) Oceanic velocity microstructure measurements in the 20th century. J Phys Oceanogr 58(1):153-174   DOI
11 Matsuno T, Wolk F (2005) Observations of turbulent energy dissipation rate $\varepsilon$ in the Japan Sea. Deep-Sea Res Pt II 52:1564-1579   DOI
12 Morison J, Anderson R, Larson N, D'Asaro E, Boyd T (1994) The correction for thermal-lag effect in sea-bird CTD data. J Atmos Ocean Technol 11:1151-1164   DOI
13 Munk WH (1966) Abyssal receipts. Deep-Sea Res 13(4): 707-730
14 Ozmidov RV (1965) On the turbulent exchange in a stably stratified ocean. Izv Acad Sci USSR, Atmos Oceanic Phys 1:861-871
15 Park YH, Fuda JL, Durand I, Naveira Garabato AC (2008) Internal tides and vertical mixing over the Kerguelen Plateau. Deep-Sea Res Pt II 55:582-593   DOI
16 Park YH, Lee JH, Durand I, Hong CS (2014) Validation of the Thorpe scale-derived vertical diffusivities against microstructure measurements in the Kerguelen region. Biogeosciences 11:6927-6937   DOI
17 Peters H, Gregg MC, Sanford TB (1995) On the parameterization of equatorial turbulence: effect of finescale variations below the range of the diurnal cycle. J Geophys Res 100(C9):18333-18348   DOI
18 Polzin K, Toole JM, Ledwell JR, Schmitt R (1997) Spatial variability of turbulent mixing in the abyssal ocean. Science 276:93-96   DOI
19 Shih LH, Koseff JR, Ivey GN, Ferziger JH (2005) Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J Fluid Mech 525:193-214   DOI
20 Stansfield KC, Garrett C, Dewey R (2001) The probability distribution of the Thorpe displacement within overturns in Juan de Fuca Strait. J Phys Oceanogr 31:3421-3434   DOI
21 Thorpe SA (1977) Turbulence and mixing in a Scottish Loch. Philos T Roy Soc A, 286:125-181   DOI
22 Timmermans ML, Garrett C, Carmack E (2003) The thermohaline structure and evolution of the deep waters in the Canada Basin, Arctic Ocean. Deep-Sea Res Pt I 50(10-11):1305-1321   DOI
23 Yagi M, Yasuda I (2013) A modified method for estimating vertical profiles of turbulent dissipation rate using density inversions in the Kuril Straits. J Oceanogr 69:203-214   DOI