• Title/Summary/Keyword: Overtopping

Search Result 215, Processing Time 0.029 seconds

Estimate of Wave Overtopping Rate on Armoured Slope Structures Using FUNWAVE-TVD Model (FUNWAVE-TVD 모델을 이용한 경사구조물의 월파량 산정)

  • Moon Su Kwak
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.1
    • /
    • pp.11-19
    • /
    • 2024
  • In this study, the program was modified by adding the empirical formula of EurOtop (2018) to enable calculation of wave overtopping on armoured slope structures in the FUNWAVE-TVD model using the fully nonlinear Boussinesq equation. The validity of the modified numerical model was verified by comparing it with CLASH data and experiment data for the rubble mound structure. This model accurately reproduced the change in wave overtopping rate according to the difference in the roughness factor of the armoured block, and well reproduced the rate of decrease in wave overtopping rate due to the increase in relative freeboard. The overtopping rate of the armoured slope structures showed significant differences depending on the positioning condition of the armoured blocks. When Tetrapods were placed with regular positioning, the overtopping rate increased significantly compared to when they were placed with random positioning, and it was consistent with when they were placed with Rocks. Meanwhile, when rocks were placed in one row, the wave overtopping rate was greater than when rocks were placed in two rows, which is believed to be due to the influence of the roughness and permeability of the structure's surface.

Influence of slot width on the performance of multi-stage overtopping wave energy converters

  • Jungrungruengtaworn, Sirirat;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.668-676
    • /
    • 2017
  • A two-dimensional numerical investigation is performed to study the influence of slot width of multi-stage stationary floating overtopping wave energy devices on overtopping flow rate and performance. The hydraulic efficiency based on captured crest energy of different device layouts is compared with that of single-stage device to determine the effect of the geometrical design. The results show optimal trends giving a huge increase in overtopping energy. Plots of efficiency versus the relative slot width show that, for multi-stage devices, the greatest hydraulic efficiency is achieved at an intermediate value of the variable within the parametric range considered, relative slot width of 0.15 and 0.2 depending on design layouts. Moreover, an application of adaptive slot width of multi-stage device is investigated. The numerical results show that the overall hydraulic efficiency of non-adaptive and adaptive slot devices are approximately on par. The effect of adaptive slot width on performance can be negligible.

Behavior of Failure of Agricultural Reservoirs Embankment Reinforced by Geotextile under Overtopping Condition (지오텍스타일로 보강된 농업용 저수지 제체의 붕괴거동)

  • Lee, Dal Won;Noh, Jae Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.2
    • /
    • pp.59-64
    • /
    • 2014
  • In this study, the large scale test was performed to investigate the behavior of failure for the embankment and spillway transitional zone by overtopping. The pore water pressure, earth pressure, settlement and failure pattern of covering embankment with geotextile were compared and analyzed. The pore water pressure showed a small change in the spillway transition zone and core, indicating that the geotextile efficiently reinforced the embankment. The earth pressure decreased the infiltration of the pore water only in inclined cores type to secure local stability. The behavior of failure started from the bottom and gradually progressed upwards. After the intermediate overtopping period (100 min), width and depth of the seepage erosion were very small due to the effect of geotextile which delayed failure. Therefore, the reinforced method by geotxtile was a very effective method to respond to the emergency due to overtopping.

Numerical Analysis of Wave Transformation of Permeable Breakwater Permitting Wave Overtopping (월파를 허용하는 투과성 방파제의 파랑변형에 관한 수치해석)

  • 김도삼;이광호
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.1-5
    • /
    • 2002
  • In the past, ports have been mainly developed in natural harbors but nowadays ports are built wherever they can be economically justified. Therefore, construction of breakwater in area that establishment of structure is disadvantageous is risen according to the change of conditions to the location for ports. In case of building gravity breakwater in such point, need that plane shapes of more reasonable section permitting wave overtopping is necessary. One of the earliest methods for solving unsteady incompressible flow including free surfaces is the MAC(Marker And Cell) method by Harlow and Welch (1965). Recently. VOF(Volume Of Fluid) method to improve several drawbacks of MAC method is suggested by Hirt and Nichols(1981) and utilized extensively in fields of hydrodynamics. Wave overtopping phenomenon is simulated including wave breaking for permeable breakwater by numerical analysis and investigated features of wave overtopping behind structure using VOF method.

Experimental study on multi-level overtopping wave energy convertor under regular wave conditions

  • Liu, Zhen;Han, Zhi;Shi, Hongda;Yang, Wanchang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.651-659
    • /
    • 2018
  • A multi-level overtopping wave energy converter was designed according to the large tidal range and small wave heights in China. It consists of two reservoirs with sloping walls at different levels. The reservoirs share a common outflow duct and a low-head axial turbine. The experimental study was carried out in a laboratory wave-flume to investigate the overtopping performance of the device. The depth-gauges were used to measure the variation of the water level in the reservoirs. The data was processed to derive the time-averaged overtopping discharges. It was found that the lower reservoir can store wave waters at the low water level and break the waves which try to climb up to the upper reservoir. The upper sloping angle and the opening width of the lower reservoir both have significant effects on the overtopping discharges, which can provide more information to the design and optimization of this type of device.

Numerical Simulation of Fully Nonlinear Free-Surface Flow around Seawall with Slope (경사면을 갖는 월파형 구조물 주위의 비선형성 자유표면류의 수치 시뮬레이션)

  • Park, Jong-Chun;Park, Dong-In;Lee, Sang-Beom;Hong, Gi-Yong;Sun, Sung-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.18-24
    • /
    • 2005
  • Wave overtopping is one of the most important processes for the design of seawalls. The term "wave overtopping" is used here to refer to the processes where waves hit a sloping structure run up the slope and, if the crest level of the slope is lower than the highest run up level, overtop the structure. Wave overtopping is dependent on the processes associated with breaking wave. A numerical model based on Navier-Stokes equation and the Marker-density function for predicting wave overtopping of coastal structures is developed in this paper. In order to evaluate the present model, two simulations are tested. One is overflow without waves at vertical seawall, and the other is wave overtopping at sloping seawalls.

Effect of the Shape of Absorbing Revetment on Wave Overtopping Rate (소파호안의 형상이 월파량에 미치는 영향)

  • Hur, Dong-Soo;Choi, Dong-Seok;Choi, Sun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.7-12
    • /
    • 2008
  • The present study numerically investigates the effect of the shape of absorbing revetment on wave overtopping rate under regular and irregular incident waves. At first, the numerical model developed by Hur and Choi(2008), which considers the flow through a porous medium with inertial, laminar and turbulent resistance terms, directly simulates Wave-Structure-Sandy seabed interaction and can determine the eddy viscosity with LES turbulent model in 2-Dimensional wave field (LES-WASS-2D), is validated when compared to experimental data. Numerical simulations are then performed to examine the effect of the shape of absorbing revetment and incident wave conditions on wave overtopping rate. The numerical result shows that the wave overtopping rate decreases with the slope gradient of absorbing revetment under both regular and irregular waves. In addition, the effects of mean grain size and porosity of absorbing revetment, incident wave period and crest height on wave overtopping rate are discussed.

Effects of vertical wall and tetrapod weights on wave overtopping in rubble mound breakwaters under irregular wave conditions

  • Park, Sang Kil;Dodaran, Asgar Ahadpour;Han, Chong Soo;Shahmirzadi, Mohammad Ebrahim Meshkati
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.947-964
    • /
    • 2014
  • Rubble mound breakwaters protect the coastal line against severe erosion caused by wave action. This study examined the performance of different sizes and properties (i.e. height of vertical wall and tetrapod size) of rubble mound breakwaters on reducing the overtopping discharge. The physical model used in this study was derived based on an actual rubble mound in Busan Yacht Harbor. This research attempts to fill the gap in practical knowledge on the combined effect of the armor roughness and vertical wall on wave overtopping in rubble mound breakwaters. The main governing parameters used in this study were the vertical wall height, variation of the tetrapod weights, initial water level elevation, and the volume of overtopping under constant wave properties. The experimental results showed that the roughness factor differed according to the tetrapod size. Furthermore, the overtopping discharge with no vertical wall was similar to that with relatively short vertical walls (${\gamma}_v=1$). Therefore, the experimental results highlight the importance of the height of the vertical wall in reducing overtopping discharge. Moreover, a large tetrapod size may allow coastal engineers to choose a shorter vertical wall to save cost, while obtaining better performance.

Reliability Analysis of the Expected Overtopping Probability of Rubble Mound Breakwater (마루높이 설정을 위한 월파확률의 신뢰성 해석)

  • Kweon, Hyuck-Min;Suh, Kyung-Doug;Lee, Young-Yeol
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.376-381
    • /
    • 2003
  • The reliability analysis of overtopping probability is proposed. In order to estimate the expected overtopping probability of the rubble mound breakwater, the experimental results of individual wave runup height is applied for the analysis of irregular wave system. The joint distribution of wave heights and periods is used for the input data of runup calculation because the runup height depends on the wave height and period. The runup heights during the one event that the design wave attacks the rubble mound breakwater extend to the one life cycle of 60 years. Utilizing the Monte-Carlo method, the one life cycle is tried more about 60 times for obtaining the expected value of overtopping probability. It is found that the inclusion of the variability of wave tidal and wave steepness has great influence on the computation of the expected overtopping probability of rubble mound breakwater. The previous design disregarding the tidal fluctuation largely overestimates or underestimates the expected overtopping probability depending on tidal range and wave steepness.

  • PDF

Numerical Simulation of Nonlinear Free-Surface Flow around Seawall with Slope (경사면을 갖는 월파형 구조물 주위의 비서형성 자유표면류의 수치 시뮬레이션)

  • PARK JONG-CHUN;PARK DONG-IN;LEE SANG-BEOM;HONG GI-YONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.90-95
    • /
    • 2004
  • During the past 50 years methods for predicting wave overtopping of coastal structures have coastal structures have continuously been developed Wave overtopping is one of the most important processes for the design of seawalls. The term 'wave overtopping' is used here to refer to the processes where waves hit a sloping structure run up the slope and, if the crest level of the slope is lower than the highest run up level, overtop the structure. Wave overtopping is dependent on the processes associated with breaking wave. The Numerical model is based on Navier-Stokes equation and Marker-Density Function of method for nonlinear free-surface flow by Miyata & Park(1995). The influence of how the slopes of seawalls, wave type and crest freeboard affect overtopping discharges has been investigated. The research of study using the new development nonlinear free-surface flow numerical model SOLA-VOF are presented.

  • PDF