• 제목/요약/키워드: Overlying Water

검색결과 101건 처리시간 0.059초

Distribution of Vital, Environmental Components and Nutrients Migration Over Sedimentary Water Layers

  • Khirul, Md Akhte;Kim, Beom-Geun;Cho, Daechul;Kwon, Sung-Hyun
    • 한국환경과학회지
    • /
    • 제30권3호
    • /
    • pp.195-206
    • /
    • 2021
  • Contaminated marine sediment is a secondary pollution source in the coastal areas, which can result in increased nutrients concentrations in the overlying water. We analyzed the nutrients release characteristics into overlying water from sediments and the interaction among benthic circulation of nitrogen, phosphorus, iron, and sulfur were investigated in a preset sediment/water column. Profiles of pH, ORP, sulfur, iron, nitrogen, phosphorus pools were determined in the sediment and three different layers of overlying water. Variety types of sulfur in the sediments plays a significant role on nutrients transfer into overlying water. Dissimilatory nitrate reduction and various sulfur species interaction are predominantly embodied by the enhancing effects of sulfide on nitrogen reduction. Contaminant sediment take on high organic matter, which is decomposed by bacteria, as a result promote bacterial sulfate reduction and generate sulfide in the sediment. The sulfur and iron interactions had also influence on phosphorus cycling and released from sediment into overlying water may ensue over the dissolution of ferric iron intercede by iron-reducing bacteria. The nutrients release rate was calculated followed by release rate equation. The results showed that the sediments released large-scale quantity of ammonium nitrogen and phosphate, which are main inner source of overlying water pollution. A mechanical migration of key nutrients such as ammonia and inorganic phosphate was depicted numerically with Fick's diffusion law, which showed a fair agreement to most of the experimental data.

Nutrient dynamics study of overlying water affected by peroxide-treated sediment

  • Haque, Niamul;Kwon, Sung-Hyun
    • Journal of Ecology and Environment
    • /
    • 제41권9호
    • /
    • pp.235-245
    • /
    • 2017
  • Background: Loading of excess nutrient via bioremediation of polluted sediment to overlying water could trigger anoxia and eutrophication in coastal area. The aim of this research was to understand the changes of overlying water features such as dissolved oxygen (DO); pH; oxidation reduction potential (ORP); $chlorophyll-{\alpha}$ ($Chl-{\alpha}$); and nitrogen nutrients ammonia ($N-NH_4{^+}$), nitrate ($N-NO_3{^-}$), and nitrite ($N-NO_2^-$) when the sediment was not treated (control) and treated by calcium peroxide for 5 weeks. Methods: The water samples were analyzed for measuring physical and chemical properties along with the sediment analyzed by polymerase chain reaction (PCR) including denaturing gradient gel electrophoresis (DGGE) for identifying the phylogenetic affiliation of microbial communities. Results: Results showed that due to the addition of calcium peroxide in sediment, the overlying water exposed the rise of dissolve oxygen, pH, and ORP than control. Among the nitrogen nutrients, ammonia inhibition was higher in calcium peroxide treatment than control but in case of nitrate inhibition, it was reversed than control. $Chlorophyll-{\alpha}$ was declined in treatment column water by 30% where it was 20% in control column water. Actibacter and Salegentibacter group were detectable in the calcium-peroxide-treated sediment; in contrary, no detectable community ware found in control sediment. Both phylogenetic groups are closely related to marine microflora. Conclusions: This study emphasizes the importance of calcium peroxide as an oxygen release material. Interaction with peroxide proved to be enhancing the formation of microbial community that are beneficial for biodegradation and spontaneity of nutrient attenuation into overlying water.

pH와 산화환원전위에 따른 상등수-퇴적물에서의 인 형태 변화 (Speciation of Phosphorus Dependent upon pH and Oxidation Reduction Potential in Overlying Water and Sediment)

  • 정우혁;김건하
    • 대한환경공학회지
    • /
    • 제28권5호
    • /
    • pp.472-479
    • /
    • 2006
  • 퇴적물로부터 오염물질 용출은 상등수 수질에 많은 영향을 미친다. 본 연구에서는 pH와 산화환원전위에 따른 상등수 및 퇴적물의 인 존재형태의 변화를 관찰하였다. 상등수가 순환되어 호기성 상태를 유지하는 경우, 성층현상으로 인하여 혐기성을 띠는 경우, 퇴적물 상부에 모래 캡핑이 포설된 상태에서 혐기성을 띠는 경우 등 3가지 경우를 가정하여 상등수의 인 형태별 농도를 측정하였다. 퇴적물에서 인 용출은 상등수가 산성일 경우 증가하였으며, 캡핑은 인 용출량을 저감시키고, $PO_4-P$의 용출을 지연시키는 효과가 있는 것으로 나타났다. 상등수와 퇴적물이 혐기성일 때 상등수의 pe/pH가 인이 apatite 상태로 안정하게 존해하는 범위에서 상등수의 인농도는 감소하여 일정한 농도를 나타냈다. 세개의 칼럼에서 최종 평균 인 농도는 순환칼럼에서 0.223 mg/L, 비순환칼럼에서 0.342 mg/L, 캡핑칼럼에서 0.184 mg/L로 캡핑된 칼럼에서 가장 낮게 나타났다. 성층현상에 의해 수질이 악화될 수 있는 호소에 캡핑을 활용할 경우 퇴적물에 의해서 상등수의 인 농도를 감소할 수 있을 것으로 기대된다.

Active Exchange of Water and Nutrients between Seawater and Shallow Pore Water in Intertidal Sandflats

  • Hwang, Dong-Woon;Kim, Gue-Buem;Yang, Han-Soeb
    • Ocean Science Journal
    • /
    • 제43권4호
    • /
    • pp.223-232
    • /
    • 2008
  • In order to determine the temporal and spatial variations of nutrient profiles in the shallow pore water columns (upper 30 cm depth) of intertidal sandflats, we measured the salinity and nutrient concentrations in pore water and seawater at various coastal environments along the southern coast of Korea. In the intertidal zone, salinity and nutrient concentrations in pore water showed marked vertical changes with depth, owing to the active exchange between the pore water and overlying seawater, while they are temporally more stable and vertically constant in the sublittoral zone. In some cases, the advective flow of fresh groundwater caused strong vertical gradients of salinity and nutrients in the upper 10 cm depth of surface sediments, indicating the active mixing of the fresher groundwater with overlying seawater. Such upper pore water column profiles clearly signified the temporal fluctuation of lower-salinity and higher-Si seawater intrusion into pore water in an intertidal sandflat near the mouth of an estuary. We also observed a semimonthly fluctuation of pore water nutrients due to spring-neap tide associated recirculation of seawater through the upper sediments. Our study shows that the exchange of water and nutrients between shallow pore water and overlying seawater is most active in the upper 20 cm layer of intertidal sandflats, due to physical forces such as tides, wave set-up, and density-thermal gradient.

하천 퇴적물의 영양염류 모니터링 (Monitoring and Analysis of Nutrients in Sediments in the Riverbed)

  • 김건하;정우혁;이준배
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.838-845
    • /
    • 2006
  • Characterization of sediment in the riverbed is of importance for effective water quality management, yet have not been monitored sufficiently. This paper reports monitoring results of nutrient concentrations of sediments. Surface waters and sediments were sampled four times during rainy season at five monitoring points. Organics of overlying water were increased after high flow condition followed by decreasing tendencies. Soluble phosphorus fraction among total phosphorus was increased after high flow condition while total phosphorus was in decreasing tendencies. Monitoring result suggested that more extended monitoring scheme for flow rate, scouring velocity, and suspended material is required for analyzing relationship between water quality and sediment.

금강유역 비점원에서 발생하는 미생물 오염 및 수질에 대한 영향 (Microorganism Contamination from Diffuse Sources and Its Impacts on Water Quality in the Geum River Basin)

  • 김건하
    • 한국물환경학회지
    • /
    • 제22권3호
    • /
    • pp.504-512
    • /
    • 2006
  • In order to estimate microbial contaminant discharge from diffuse sources, rainfall runoff was monitored at forestry, agriculture and urban watersheds. Total coliform and E. coli were monitored at the study watersheds as they are regulated by the environmental laws. Concentration and EMC (Event Mean Concentration) of coliform of rainfall runoff at the urban watershed were the highest followed by those from agricultural and forestry watersheds. By monitoring coliform concentrations of overlying water and sediment at five monitoring points in the downstream of the Geum River, average concentration from spring to summer was higher than those values from fall to spring. Coliform concentrations in the pore water were higher compared to those of overlying water and closely related with flow rate of the river.

Study on the water bursting law and spatial distribution of fractures of mining overlying strata in weakly cemented strata in West China

  • Li, Yangyang;Zhang, Shichuan;Yang, Yingming;Chen, Hairui;Li, Zongkai;Ma, Qiang
    • Geomechanics and Engineering
    • /
    • 제28권6호
    • /
    • pp.613-624
    • /
    • 2022
  • A study of the evolution of overburden fractures under the solid-fluid coupling state was conducted based on the geological and mining characteristics of the coal seam depth, weak strata cementation, and high-intensity mining in the mining areas of West China. These mining characteristics are key to achieving water conservation during mining or establishing groundwater reservoirs in coal mines. Based on the engineering background of the Daliuta Coal Mine, a non-hydrophilic simulation material suitable for simulating the weakly cemented rock masses in this area was developed, and a physical simulation test was carried out using a water-sand gushing test system. The study explored the spatial distribution and dynamic evolution of the fractured zone in the mining overburden under the coupling of stress and seepage. The experimental results show that the mining overburden can be vertically divided into the overall migration zone, the fracture extension zone and the collapse zone; additionally, in the horizontal direction, the mining overburden can be divided into the primary fracture zone, periodic fracture zone, and stop-fracture zone. The scope of groundwater flow in the overburden gradually expands with the mining of coal seams. When a stable water inrush channel is formed, other areas no longer generate new channels, and the unstable water inrush channels gradually close. Finally, the primary fracture area becomes the main water inrush channel for coal mines. The numerical simulation results indicate that the overlying rock breaking above the middle of the mined-out area allows the formation of the water-conducting channel. The water body will flow into the fracture extension zone with the shortest path, resulting in the occurrence of water bursting accidents in the mining face. The experimental research results provide a theoretical basis for the implementation of water conservation mining or the establishment of groundwater reservoirs in western mining areas, and this theoretical basis has considerable application and promotion value.

Migration of fine granular materials into overlying layers using a modified large-scale triaxial system

  • Tan Manh Do;Jan Laue;Hans Mattsson;Qi Jia
    • Geomechanics and Engineering
    • /
    • 제37권4호
    • /
    • pp.359-370
    • /
    • 2024
  • The primary goal of this study is to evaluate the migration of fine granular materials into overlying layers under cyclic loading using a modified large-scale triaxial system as a physical model test. Samples prepared for the modified large-scale triaxial system comprised a 60 mm thick gravel layer overlying a 120 mm thick subgrade layer, which could be either tailings or railway sand. A quantitative analysis of the migration of fine granular materials was based on the mass percentage and grain size of migrated materials collected in the gravel. In addition, the cyclic characteristics, i.e., accumulated axial strain and excess pore water pressure, were evaluated. As a result, the total migration rate of the railway sand sample was found to be small. However, the total migration rate of the sample containing tailings in the subgrade layer was much higher than that of the railway sand sample. In addition, the migration analysis revealed that finer tailings particles tended to be migrated into the upper gravel layer easier than coarser tailings particles under cyclic loading. This could be involved in significant increases in excess pore water pressure at the last cycles of the physical model test.