• Title/Summary/Keyword: Overlap length

Search Result 128, Processing Time 0.027 seconds

Simulative Investigation of Spectral Amplitude Coding Based OCDMA System Using Quantum Logic Gate Code with NAND and Direct Detection Techniques

  • Sharma, Teena;Maddila, Ravi Kumar;Aljunid, Syed Alwee
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.531-540
    • /
    • 2019
  • Spectral Amplitude Coding Optical Code Division Multiple Access (SAC OCDMA) is an advanced technique in asynchronous environments. This paper proposes design and implementation of a novel quantum logic gate (QLG) code, with code construction algorithm generated without following any code mapping procedures for SAC system. The proposed code has a unitary matrices property with maximum overlap of one chip for various clients and no overlaps in spectra for the rest of the subscribers. Results indicate that a single algorithm produces the same length increment for codes with weight greater than two and follows the same signal to noise ratio (SNR) and bit error rate (BER) calculations for a higher number of users. This paper further examines the performance of a QLG code based SAC-OCDMA system with NAND and direct detection techniques. BER analysis was carried out for the proposed code and results were compared with existing MDW, RD and GMP codes. We demonstrate that the QLG code based system performs better in terms of cardinality, which is followed by improved BER. Numerical analysis reveals that for error free transmission (10-9), the suggested code supports approximately 170 users with code weight 4. Our results also conclude that the proposed code provides improvement in the code construction, cross-correlation and minimization of noises.

Device and Circuit Performance Issues with Deeply Scaled High-K MOS Transistors

  • Rao, V. Ramgopal;Mohapatra, Nihar R.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.1
    • /
    • pp.52-62
    • /
    • 2004
  • In this paper we look at the effect of Fringe-Enhanced-Barrier-lowering (FEBL) for high-K dielectric MOSFETs and the dependence of FEBL on various technological parameters (spacer dielectrics, overlap length, dielectric stack, S/D junction depth and dielectric thickness). We show that FEBL needs to be contained in order to maintain the performance advantage with scaled high-K dielectric MOSFETs. The degradation in high-K dielectric MOSFETs is also identified as due to the additional coupling between the drain-to-source that occurs through the gate insulator, when the gate dielectric constant is significantly higher than the silicon dielectric constant. The technology parameters required to minimize the coupling through the high-K dielectric are identified. It is also shown that gate dielectric stack with a low-K material as bottom layer (very thin $SiO_2$ or oxy-nitride) will be helpful in minimizing FEBL. The circuit performance issues with high-K MOS transistors are also analyzed in this paper. An optimum range of values for the dielectric constant has been identified from the delay and the energy dissipation point of view. The dependence of the optimum K for different technology generations has been discussed. Circuit models for the parasitic capacitances in high-K transistors, by incorporating the fringing effects, have been presented.

Strength Analysis of Joint Between Steel Plate and CFRP Laminated Splice Plates Patched by Adhesive (접착제를 사용한 CFRP와 강재 이음부의 강도 해석)

  • Park, Dae-Yong;Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.13-19
    • /
    • 2011
  • This paper presents the stress distribution of the damaged butt joint of steel plate using CFRP laminates when the flange in tension zone of steel box girder is welded by butt welding. When CFRP sheets are patched on tension flange of steel-box girder, the stress distribution of a vertical and normal direction on damaged welding part is shown as parameters such as a variation of the thickness of adhesive, the overlap length with steel, and the modulus of elasticity of CFRP sheets. For the study, we wrote the computer program using the EAS(Enhanced assumed strain) finite element method for plane strain that has a very fast convergency and exact stress for distorted shape.

A Numerical Study on the Behavior of Steel Pipes in Umbrella Arch Method (Umbrella Arch 공법 적용시 강관의 거동에 관한 수치해석적 연구)

  • 차민웅;이승도;문현구
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.26-34
    • /
    • 2004
  • The effectiveness of UAM is generally accepted, but there has not been much rigorous study on UAM and its mechanical support mechanism is yet to be established. Also, most of UAM installations depend on empirical judgement rather than on engineering knowledge. In this study, an attempt to confirm the support effects and to understand the support mechanism of UAM has been made by analyzing the mechanical behavior of umbrella pipes installed in various ground conditions. The effects of overburden thickness, pipe size, overlap length and the placement of steel arch are studied using a three-dimensional finite element method. From the numerical parametric study, the support mechanism of UAM has been confirmed by analyzing the structural forces in the umbrella pipes due to the excavation.

A Study on Dynamic Valve Characteristics of Regulators in Hydraulic Winches According to Design Parameters (선박용 유압윈치용 레귤레이터의 설계 파라미터 변화에 따른 밸브 거동 특성 연구)

  • Jeong, Yoo Seong;Chung, Won Jee;Noh, Ki Tae;Lee, Jung Min;Choi, Jong Kap;Jeong, Young Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.214-222
    • /
    • 2017
  • Maritime deck machinery relies heavily on the importation of components produced by overseas companies. Our research defines design parameters for hydraulic winch regulators used in maritime deck machinery. Using Amesim, we were able to conduct 1D modeling, and utilizing CFS then enabled us to create 3D models. These models were analyzed in our research for changes in pressure on each port that resulted from the regulator's spring constant and changes in the primary tension-compression field. Our research then analyzed alterations in traits caused by changes in the length of overlap between the spool and sleeve. Last but not least, our research analyzed the trait alteration resulting from changing the interval between the spool and sleeve. We believe the results of our research can be used to design a hydraulic winch regulator used in maritime deck machinery that does not require importation.

Welding Characteristics of Rapid Palatal Expander for Teeth Calibration using a Continuous Wave Nd:YAG Laser (연속파 Nd:YAG 레이저를 이용한 치아교정 급속 구개확장장치 용접특성)

  • Yoo, Young-Tae;Yang, Yun-Seok;Shin, Ho-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.40-49
    • /
    • 2010
  • The Purpose of this paper is to weld a rapid palatal expander using a continuous wave Nd:YAG laser. The rapid palatal expander has become a useful treatment method for severe maxillary transverse deficiencies and posterior crossbites. Rapid maxillary expansion is a well-established method to correct transverse maxillary deficiency and arch length discrepancy. The major process parameters studied in the present laser welding experiment were the positions of focus, laser power and travel speed of laser beam. We measured the fusion zone size and its shape using an optical microscope for the observation of cross-sectional area and tension stress of a rapid palatal expander welded. Through the experimental investigation, the optimum speeds and power of laser without deficiencies of weld cross-sectional area were obtained.

Friction Stir Spot Welding of AA5052 Aluminum Alloy and C11000 Copper Lap Joint

  • Prasomthong, Suriya;Sangsiri, Pradit;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.145-152
    • /
    • 2015
  • The article aims to apply a friction stir spot welding for producing the lap joint between AA5052 aluminum alloy and C11000 copper alloy. The dimension of the materials was 100 mm in length, 30 mm in width and 1.0 mm in thickness. The copper plate was set overlap the aluminum plate by 30 mm. The welding parameter was the rotating speed of 2500-4000 rpm, the pin inserting rate of 2-8 mm/min and the holding time of 6 sec. The mechanical properties test and the microstructure investigation were performed to evaluate the lap joint quality. The summarized results are as follows. The friction stir spot welding could produce effectively the lap joint between AA5052 and C11000 copper. Increase of the rotating speed and holding time directly affected to decrease the tensile shear strength of the lap joint. The optimized welding parameters in this study that indicated the tensile shear strength of 864 N was the rotating speed of 3500 rpm, the pin inserting rate of 6 mm/min and the holding time of 4sec. The experimental results also showed that the hardness of the weld metal was lower than that of the base materials.

Accuracy Assessment Geoposition of Airborne Line-Scanner Image (라인방식 디지털 항공 카메라영상의 위치 정확도 평가)

  • Cho, Han-Kun;Wie, Gwang-Jae;Choi, Yun-Soo;Lee, Sang-Jin
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.51-59
    • /
    • 2011
  • We produced true ortho images after interpolating occlusion areas and relief displacement of building as well as producing ortho-images to use backward image of ADS which is a aerial digital camera of line type. Also, I was able to produce high quality ortho-images using a small mount of Ground Control Points(GCP) relatively to compare to frame type camera from the evaluation of horizontal position accuracy using ground check points, photo control points for the verification of ortho-images and true-ortho images. Also, I was able to verify the effectiveness in interpolating occlusion areas cause the length overlap was 100% when producing true-ortho images of line type camera.

Fast Sequential Probability Ratio Test Method to Obtain Consistent Results in Speaker Verification (화자확인에서 일정한 결과를 얻기 위한 빠른 순시 확률비 테스트 방법)

  • Kim, Eun-Young;Seo, Chang-Woo;Jeon, Sung-Chae
    • Phonetics and Speech Sciences
    • /
    • v.2 no.2
    • /
    • pp.63-68
    • /
    • 2010
  • A new version of sequential probability ratio test (SPRT) which has been investigated in utterance-length control is proposed to obtain uniform response results in speaker verification (SV). Although SPRTs can obtain fast responses in SV tests, differences in the performance may occur depending on the compositions of consonants and vowels in the sentences used. In this paper, a fast sequential probability ratio test (FSPRT) method that shows consistent performances at all times regardless of the compositions of vocalized sentences for SV will be proposed. In generating frames, the FSPRT will first conduct SV test processes with only generated frames without any overlapping and if the results do not satisfy discrimination criteria, the FSPRT will sequentially use frames applied with overlapping. With the progress of processes as such, the test will not be affected by the compositions of sentences for SV and thus fast response outcomes and even consistent performances can be obtained. Experimental results show that the FSPRT has better performance to the SPRT method while requiring less complexity with equal error rates (EER).

  • PDF

GEOMETRY OF SATELLITE IMAGES - CALIBRATION AND MATHEMATICAL MODELS

  • JACOBSEN KARSTEN
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.182-185
    • /
    • 2005
  • Satellite cameras are calibrated before launch in detail and in general, but it cannot be guaranteed that the geometry is not changing during launch and caused by thermal influence of the sun in the orbit. Modem satellite imaging systems are based on CCD-line sensors. Because of the required high sampling rate the length of used CCD-lines is limited. For reaching a sufficient swath width, some CCD-lines are combined to a longer virtual CCD-line. The images generated by the individual CCD-lines do overlap slightly and so they can be shifted in x- and y-direction in relation to a chosen reference image just based on tie points. For the alignment and difference in scale, control points are required. The resulting virtual image has only negligible errors in areas with very large difference in height caused by the difference in the location of the projection centers. Color images can be related to the joint panchromatic scenes just based on tie points. Pan-sharpened images may show only small color shifts in very mountainous areas and for moving objects. The direct sensor orientation has to be calibrated based on control points. Discrepancies in horizontal shift can only be separated from attitude discrepancies with a good three-dimensional control point distribution. For such a calibration a program based on geometric reconstruction of the sensor orientation is required. The approximations by 3D-affine transformation or direct linear transformation (DL n cannot be used. These methods do have also disadvantages for standard sensor orientation. The image orientation by geometric reconstruction can be improved by self calibration with additional parameters for the analysis and compensation of remaining systematic effects for example caused by a not linear CCD-line. The determined sensor geometry can be used for the generation? of rational polynomial coefficients, describing the sensor geometry by relations of polynomials of the ground coordinates X, Y and Z.

  • PDF