• Title/Summary/Keyword: Overlap errors

Search Result 41, Processing Time 0.025 seconds

Fault Analysis of Transformer using Tunable Infrared Gas Sensors (가변 파장형 적외선 센서를 이용한 변압기 결함 진단)

  • Gun-Ho Lee;Seung-Hwan Yi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.55-61
    • /
    • 2023
  • The objective of this study is to determine the concentrations of mixed gases by establishing a diagnosis method of a transformer using tunable-wavelength optical infrared sensors. Absorption of infrared light by methane, acetylene, and ethylene gases injected is measured from the outputs of the infrared sensors. Regression analysis equations of the gas concentrations are acquired from their respective measured absorption. The obtained concentrations are as follows: -3-9 % errors above 600 ppm(methane), 3 % errors above 1200 ppm(acetylene), and 10 % errors above 500 ppm(ethylene). The concentration inference equations obtained using the individual gases are applicable when the absorption wavelength bands do not overlap. The results of the fault analysis of a transformer using the Duval triangle method and the tunable infrared gas sensors are as follows: temperature faults with -1-1% errors and energy faults with -7-7 % errors.

Localized evaluation of actuator tracking for real-time hybrid simulation using frequency-domain indices

  • Xu, Weijie;Guo, Tong;Chen, Cheng
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.631-642
    • /
    • 2017
  • Accurate actuator tracking plays an important role in real-time hybrid simulation (RTHS) to ensure accurate and reliable experimental results. Frequency-domain evaluation index (FEI) interprets actuator tracking into amplitude and phase errors thus providing a promising tool for quantitative assessment of real-time hybrid simulation results. Previous applications of FEI successfully evaluated actuator tracking over the entire duration of the tests. In this study, FEI with moving window technique is explored to provide post-experiment localized actuator tracking assessment. Both moving window with and without overlap are investigated through computational simulations. The challenge is discussed for Fourier Transform to satisfy both time domain and frequency resolution for selected length of moving window. The required data window length for accuracy is shown to depend on the natural frequency and structural nonlinearity as well as the ground motion input for both moving windows with and without overlap. Moving window without overlap shows better computational efficiency and has potential for future online evaluation. Moving window with overlap however requires much more computational efforts and is more suitable for post-experiment evaluation. Existing RTHS data from Network Earthquake Engineering Simulation (NEES) is utilized to further demonstrate the effectiveness of the proposed approaches. It is demonstrated that with proper window size, FEI with moving window techniques enable accurate localized evaluation of actuator tracking for real-time hybrid simulation.

An Inspection on Stress Intensity Factor of Center Crack Tip by Superposition Method (중첩법에 의한 중앙 크랙 선단의 응력확대계수에 관한 검증)

  • 한문식;조재웅;이양섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.172-181
    • /
    • 2003
  • In this study, the stress intensity factor of center crack tip is calculated by the superposition method when it is surrounded by symmetrically distributed small cracks. The values of stress intensity factors of center crack tips are compared with those of the center crack tips calculated by the superposition method. These compared errors are influenced by the locations of distributed small cracks. These errors are inspected. When small cracks overlap and approach near the center crack tip, the effect of interaction caused by these cracks becomes noticeable and these errors become larger. In case of multiple distributed small cracks except this case, the stress intensity factor of the center crack tip is easily calculated by the superposition method.

Frequency-Domain RLS Algorithm Based on the Block Processing Technique (블록 프로세싱 기법을 이용한 주파수 영역에서의 회귀 최소 자승 알고리듬)

  • 박부견;김동규;박원석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.240-240
    • /
    • 2000
  • This paper presents two algorithms based on the concept of the frequency domain adaptive filter(FDAF). First the frequency domain recursive least squares(FRLS) algorithm with the overlap-save filtering technique is introduced. This minimizes the sum of exponentially weighted square errors in the frequency domain. To eliminate discrepancies between the linear convolution and the circular convolution, the overlap-save method is utilized. Second, the sliding method of data blocks is studied Co overcome processing delays and complexity roads of the FRLS algorithm. The size of the extended data block is twice as long as the filter tap length. It is possible to slide the data block variously by the adjustable hopping index. By selecting the hopping index appropriately, we can take a trade-off between the convergence rate and the computational complexity. When the input signal is highly correlated and the length of the target FIR filter is huge, the FRLS algorithm based on the block processing technique has good performances in the convergence rate and the computational complexity.

  • PDF

Panoramic Video Generation Method Based on Foreground Extraction (전경 추출에 기반한 파노라마 비디오 생성 기법)

  • Kim, Sang-Hwan;Kim, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.441-445
    • /
    • 2011
  • In this paper, we propose an algorithm for generating panoramic videos using fixed multiple cameras. We estimate a background image from each camera. Then we calculate perspective relationships between images using extracted feature points. To eliminate stitching errors due to different image depths, we process background images and foreground images separately in the overlap regions between adjacent cameras by projecting regions of foreground images selectively. The proposed algorithm can be used to enhance the efficiency and convenience of wide-area surveillance systems.

Selection Methods of Multi-Constellation SBAS in WAAS-EGNOS Overlap Region (WAAS-EGNOS 중첩 영역 내 위성기반 보강시스템 선택 기법 연구)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.237-244
    • /
    • 2019
  • Since SBAS provides users with GNSS orbit, clock, and ionospheric corrections and integrity, the more precise positioning is possible. As the SBAS service area is expanded due to the development of the SBAS and the installation of the additional ground stations, there is a region where two or more SBAS messages can be received. However, the research on multi-constellation SBAS selection method has not carried out. In this study, we compared the result of positioning accuracy after applying the SBAS correction selected by using WAAS priority, EGNOS priority, or error covariance comparison method to LEO satellites in the regions where WAAS and EGNOS signals are transmitted simultaneously. When using WAAS priority method, 3D orbit error is smallest at 2.57 m. The covariance comparison method is outperform at the center of the overlap region far from each WAAS and EGNOS stations. In the eastern region near the EGNOS stations, the 3D orbit errors using EGNOS priority method is 8% smaller than the errors using the WAAS priority method.

Empirical Study for Automatic Evaluation of Abstractive Summarization by Error-Types (오류 유형에 따른 생성요약 모델의 본문-요약문 간 요약 성능평가 비교)

  • Seungsoo Lee;Sangwoo Kang
    • Korean Journal of Cognitive Science
    • /
    • v.34 no.3
    • /
    • pp.197-226
    • /
    • 2023
  • Generative Text Summarization is one of the Natural Language Processing tasks. It generates a short abbreviated summary while preserving the content of the long text. ROUGE is a widely used lexical-overlap based metric for text summarization models in generative summarization benchmarks. Although it shows very high performance, the studies report that 30% of the generated summary and the text are still inconsistent. This paper proposes a methodology for evaluating the performance of the summary model without using the correct summary. AggreFACT is a human-annotated dataset that classifies the types of errors in neural text summarization models. Among all the test candidates, the two cases, generation summary, and when errors occurred throughout the summary showed the highest correlation results. We observed that the proposed evaluation score showed a high correlation with models finetuned with BART and PEGASUS, which is pretrained with a large-scale Transformer structure.

Registration of Dental Range Images from a Intraoral Scanner (Intraoral Scanner로 촬영된 치아 이미지의 정렬)

  • Ko, Min Soo;Park, Sang Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.3
    • /
    • pp.296-305
    • /
    • 2016
  • This paper proposes a framework to automatically align Dental range image captured by depth sensors like the Microsoft Kinect. Aligning dental images by intraoral scanning technology is a difficult problem for applications requiring accurate model of dental-scan datasets with efficiency in computation time. The most important thing in dental scanning system is accuracy of the dental prosthesis. Previous approaches in intraoral scanning uses a Z-buffer ICP algorithm for fast registration, but it is relatively not accurate and it may cause cumulative errors. This paper proposes additional Alignment using the rough result comes after intraoral scanning alignment. It requires that Each Depth Image of the total set shares some overlap with at least one other Depth image. This research implements the automatically additional alignment system that aligns all depth images into Completed model by computing a network of pairwise registrations. The order of the each individual transformation is derived from a global network and AABB box overlap detection methods.

A Study on the 3-Dimensional Analysis by Bundle Adjustment in Close Range Photogrammetry (근접사진측량의 번들조정에 의한 삼차원 위치해석에 관한 연구)

  • 백은기;목찬상
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.6 no.2
    • /
    • pp.10-18
    • /
    • 1988
  • In the three-dimensional analysis and deformation analysis of large structures, efficient is the use of the multiple method of close range photogrammetry which approaches the object distance. This study analyzes the influence of errors according to the overlap, the control points, and the object distance, to solve the problems which are raised in the multiple method. A wall-board, 7 meters by 3 meters, was used as a test field on which a total of 225 unknown points were equally disposed. The photographs with changing the overlap and object distance were taken by P-31 camera system. a total of 143 negatives are used in this study for computing 3-dimensional coordinates and its standard errors, and bundle adjustment of strips and blocks developed with on-line system is applied. In case of decreasing the number of control points, simulation error increases but actual error decreases and increases again. Due to the changed of object distances Z error represents largely compared to X, Y error, but good results in Z can be obtained by increasing the redundancy. And simulation error or actual error shows best results at the endlap of about 70%. To sum up this study, approprate arrangement of control points and overlap is meaningful, and multiple method by short object distance will be widely used to precision and deformation analysis of critical structures.

  • PDF

A Study of Feedrate Optimization for Tolerance Error of NC Machining (NC가공에서 허용오차를 고려한 가공속도 최적화에 관한 연구)

  • Lee, Hee-Seung;Lee, Cheol-Soo;Kim, Jong-Min;Heo, Eun-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.852-858
    • /
    • 2013
  • In numerical control (NC) machining, a machining error in equipment generally occurs for a variety of reasons. If there is a change in direction in the NC code, the characteristics of the automatic acceleration or deceleration function cause an overlap of each axis of the acceleration and deceleration zones, which in turn causes a shift in the actual processing path. Many studies have been conducted for error calibration of the edge as caused by automatic acceleration or deceleration in NC machining. This paper describes a geometric interpretation of the shape and processing characteristics of the operating NC device. The paper then describes a way to determine a feedrate that achieves the desired tolerance by using linear and parabolic profiles. Experiments were conducted by the validate equations using a three-axis NC machine. The results show that the machining errors were smaller than the machine resolution. The results also clearly demonstrate that the NC machine with the developed system can successfully predict machining errors induced with a change in direction.