• Title/Summary/Keyword: Overlap Join

Search Result 6, Processing Time 0.02 seconds

Vertically Partitioned Block Nested Loop join on Set-Valued Attributes (집합 값을 갖는 애트리뷰트에 대한 수직적으로 분할된 블록 중첩 루프 조인)

  • Whang, Whan-Kyu
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.209-214
    • /
    • 2008
  • Set-valued attributes appear in many applications to model complex objects occurring in the real world. One of the most important operations on set-valued attributes is the set join, because it provides a various method to express complex queries. Currently proposed set join algorithms are based on block nested loop join in which inverted files are partitioned horizontally into blocks. Evaluating these joins are expensive because they generate intermediate partial results severely and finally obtain the final results after merging partial results. In this paper, we present an efficient processing of set join algorithm. We propose a new set join algorithm that vertically partitions inverted files into blocks, where each block fits in memory, and performs block nested loop join without producing intermediate results. Our experiments show that the vertical bitmap nested set join algorithm outperforms previously proposed set join algorithms.

  • PDF

Selectivity Estimation for Spatio-Temporal a Overlap Join (시공간 겹침 조인 연산을 위한 선택도 추정 기법)

  • Lee, Myoung-Sul;Lee, Jong-Yun
    • Journal of KIISE:Databases
    • /
    • v.35 no.1
    • /
    • pp.54-66
    • /
    • 2008
  • A spatio-temporal join is an expensive operation that is commonly used in spatio-temporal database systems. In order to generate an efficient query plan for the queries involving spatio-temporal join operations, it is crucial to estimate accurate selectivity for the join operations. Given two dataset $S_1,\;S_2$ of discrete data and a timestamp $t_q$, a spatio-temporal join retrieves all pairs of objects that are intersected each other at $t_q$. The selectivity of the join operation equals the number of retrieved pairs divided by the cardinality of the Cartesian product $S_1{\times}S_2$. In this paper, we propose aspatio-temporal histogram to estimate selectivity of spatio-temporal join by extending existing geometric histogram. By using a wide spectrum of both uniform dataset and skewed dataset, it is shown that our proposed method, called Spatio-Temporal Histogram, can accurately estimate the selectivity of spatio-temporal join. Our contributions can be summarized as follows: First, the selectivity estimation of spatio-temporal join for discrete data has been first attempted. Second, we propose an efficient maintenance method that reconstructs histograms using compression of spatial statistical information during the lifespan of discrete data.

Spatial Join based on the Transform-Space View (변환공간 뷰를 기반으로한 공간 조인)

  • 이민재;한욱신;황규영
    • Journal of KIISE:Databases
    • /
    • v.30 no.5
    • /
    • pp.438-450
    • /
    • 2003
  • Spatial joins find pairs of objects that overlap with each other. In spatial joins using indexes, original-space indexes such as the R-tree are widely used. An original-space index is the one that indexes objects as represented in the original space. Since original-space indexes deal with sizes of objects, it is difficult to develop a formal algorithm without relying on heuristics. On the other hand, transform-space indexes, which transform objects in the original space into points in the transform space and index them, deal only with points but no sites. Thus, spatial join algorithms using these indexes are relatively simple and can be formally developed. However, the disadvantage of transform-space join algorithms is that they cannot be applied to original-space indexes such as the R-tree containing original-space objects. In this paper, we present a novel mechanism for achieving the best of these two types of algorithms. Specifically, we propose a new notion of the transform-space view and present the transform-space view join algorithm(TSVJ). A transform-space view is a virtual transform-space index based on an original-space index. It allows us to interpret on-the-fly a pre-built original-space index as a transform-space index without incurring any overhead and without actually modifying the structure of the original-space index or changing object representation. The experimental result shows that, compared to existing spatial join algorithms that use R-trees in the original space, the TSVJ improves the number of disk accesses by up to 43.1% The most important contribution of this paper is to show that we can use original-space indexes, such as the R-tree, in the transform space by interpreting them through the notion of the transform-space view. We believe that this new notion provides a framework for developing various new spatial query processing algorithms in the transform space.

Efficient Similarity Joins by Adaptive Prefix Filtering (맞춤 접두 필터링을 이용한 효율적인 유사도 조인)

  • Park, Jong Soo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.4
    • /
    • pp.267-272
    • /
    • 2013
  • As an important operation with many applications such as data cleaning and duplicate detection, the similarity join is a challenging issue, which finds all pairs of records whose similarities are above a given threshold in a dataset. We propose a new algorithm that uses the prefix filtering principle as strong constraints on generation of candidate pairs for fast similarity joins. The candidate pair is generated only when the current prefix token of a probing record shares one prefix token of an indexing record within the constrained prefix tokens by the principle. This generation method needs not to compute an upper bound of the overlap between two records, which results in reduction of execution time. Experimental results show that our algorithm significantly outperforms the previous prefix filtering-based algorithms on real datasets.

A study on mathematical modeling and heat transfer analysis to predict weld bead geometry in horizontal fillet welding (수평필릿용접의 용접부 형상을 예측하기 위한 수학적 모델링 및 열전달 해석에 관한 연구)

  • 문형순;나석주
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.58-67
    • /
    • 1996
  • The horizontal filet welding is prevalently used in heavy and ship building industries to join the parts. The phenomena occurring in the horizonal fillet welding process are very complex and highly non-linear, so that its analysis is relatively difficult. Furthermore, various kinds of weld defect such as undercut, overlap, porosity. excess weld metal and incomplete penetration can be induced due to improper welding conditions. Among these defects, undercut, overlap and excess weld metal appear frequently in horizontal filet welding. To achieve a satisfactory weld bead geometry without weld defects, it is necessary to study the effect of welding conditions in the weld bead geometry. For analyzing the weld bead geometry with and without weld defects in horizontal fillet welding, a mathematical model was proposed in conjunction with a two-dimensional heat flow analysis adopted for computing the melting tone in . base metal. The reliability of the proposed model was evaluated through experiments. which showed that the proposed model was very effective for predicting the weld bead shape with or without weld defects in horizontal fillet welding.

  • PDF

A dynamic analysis of bolted joints under various conditions (체결방법에 따른 볼트결합 구조물의 동적해석)

  • 정영도;박세만;박명균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.774-777
    • /
    • 2002
  • There are various methods to join mechanical structures together. They typically include welding, mechanical joints by bolts and other processes depending on specific needs. Analyses of joints in the mechanical structures are essential in understanding the dynamic characteristics of the structures. In this research an impulse technique is applies to investigate the dynamic behavior of joints produced by bolts. The length overlap in the joints was varied as the number of the bolts in the joins was changed. Also, the torque applied to the bolts were adjusted. Resonance frequencies were determined for the joints to evaluate the relationship between the increase in the applied torque and the increase in the number of bolts used in the joints. The results have demonstrated that the resonance frequencies of the joints increase with the increasing torque.

  • PDF