• Title/Summary/Keyword: Overhead transmission line

Search Result 216, Processing Time 0.025 seconds

Mechanical and Electrical Properties Behavior Study of Overhead Conductor due to Forest Fire (산불에 노출된 가공송전선의 기계적 및 전기적 특성 거동 연구)

  • Jang, Young-Ho;Kim, Byung-Geol;Kim, Shang-Shu;Han, Se-Won;Kim, Jin-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.108-109
    • /
    • 2008
  • Forest Fire can cause a serious damage to overhead conductors. Therefore, the detailed investigation for the changes of mechanical and electrical properties of damaged conductors should be carried out to understand the effect of forest fires on conductors. This is very much important to maintain transmission line safely. Especially, this paper describes the changes of mechanical and electrical properties of flame exposed conductor. The detailed will be given in the text.

  • PDF

The Aging Behavior of Overhead Conductor due to Forest Fire (산불에 의한 가공송전선의 열화거동)

  • Kim, Byung-Geol;Kim, Shang-Shu;Han, Se-Won;Kim, Jin-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1105-1111
    • /
    • 2007
  • Because forest fire can give a serious damage to overhead conductors, the thorough understanding about aging behavior of burned conductor is very important in maintaining the transmission line safely. Therefore, a systematic investigation was carried out by heating method. As the heating temperature increases, drastic change of tensile strength of Al wire due to the softening of Al wire occurred. When Al wire is exposed to the flame(about $800\;^{\circ}C$) during only 13 seconds, the remained tensile strength of Al wire showed under 90 %. The detailed results will be given in the text.

The Effect of Forest Fire on Temperature of Overhead Conductor (산불이 가공송전선의 온도에 미치는 영향)

  • Kim, Byung-Gol;Kim, Shang-Shu;Jun, Wan-Gi;Han, Se-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.523-524
    • /
    • 2007
  • Forest fire can give a serious damage to overhead conductors. Therefore, the definite understanding about aging behavior of burned conductor is very important in maintaining the transmission line safely. It is sure that the temperature of conductor itself will be affected by the distance apart from flame. From this point of a view, we monitored the conductor's temperature with distance from flame. As a result, the conductor's temperature decreased as the flame goes away from the conductor gradually. The temperature of conductor was reached up to 55~65% level of its atmospheric temperature. The detailed results will be presented in the text.

  • PDF

The Aging Behavior of Overhead Conductor due to Forest Fire (산불에 의한 가공송전선의 열화거동)

  • Kim, Byung-Geol;Kim, Shang-Shu;Jun, Wan-Gi;Han, Se-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.534-535
    • /
    • 2007
  • Because forest fire can give a serious damage to overhead conductors, the thorough understanding about aging behavior of burned conductor is very important in maintaining the transmission line safely. Therefore, a systematic investigation was carried out by heating method. As the heating temperature increases, drastic change of tensile strength of Al wire due to the softening of Al wire occurred. When Al wire is exposed to the flame(about $800^{\circ}C$) during only 13 seconds, the remained tensile strength of Al wire showed under 90%. The detailed results will be given in the text.

  • PDF

Economic Analysis of Power Transmission Lines using Interval Mathematics

  • Teegala, Srinivasa Kishore;Singal, Sunil Kumar
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1471-1479
    • /
    • 2015
  • A major portion of the capital costs in the present day power transmission systems are due to the cost of equipment and construction process. Transmission utilities in the recent years are drawing greater attention towards performing life cycle costing studies for cost management and decision making. However, the data involved in these studies are highly uncertain and the effect of these uncertainties cannot be directly included in the study process, resulting in inaccurate solutions. Interval mathematics provides a method for including these uncertainties throughout the cost analysis and provides final solution range in the form of intervals. In this regard, it is essential and extremely important that significant research has to be carried out in understanding the principles of life cycle costing methodology and its applicability to cost analysis of transmission lines along with uncertainties involved in the cost assessment process. In this paper, economic analysis of power transmission lines using interval mathematics has been studied. Life cycle costing studies are performed using net present value analysis on a range transmission lines used in India and the results are analyzed. A cost break even analysis considering right of way costs was carried out to determine the point of economy indifference.

Unifying calculation of vortex-induced vibrations of overhead conductors

  • Leblond, Andre;Hardy, Claude
    • Wind and Structures
    • /
    • v.8 no.2
    • /
    • pp.79-88
    • /
    • 2005
  • This paper deals with a unified way for calculating vortex-induced vibrations (Aeolian vibrations in transmission line parlance) of undamped single overhead conductors. The main objective of the paper is to identify reduced parameters which would unify the predicted vibration response to the largest possible extent. This is actually done by means of a simple mathematical transformation resulting, for a given terrain (associated to a given wind turbulence intensity), into a single, unified response curve that is applicable to any single multi-layered aluminium conductor. In order to further validate the above process, the predicted, unified response curve is compared with measured response curves drawn from tests run on a full-scale test line using several aluminium-conductor-steel-reinforced (ACSR), all-alloy-aluminium-conductor (AAAC) and aluminium-conductor-alloy-reinforced (ACAR) conductors strung at different tensions. On account of the expected scatter in the results from such field tests, the agreement is shown to be good. The final results are expressed by means of only four different curves pertaining to four different terrain characteristics. These curves may then be used to assess the vibration response of any undamped single, multi-layer aluminium conductor of any diameter, strung at any practical tension.

Analysis and Measurement of Lightning Parameters on Subscriber Telecommunication Lines (가입자 통신 선로에서의 뇌격 파라미터 분석과 측정)

  • Oh, Ho-Seok;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1309-1317
    • /
    • 2007
  • In this paper, the Induced voltage on transmission line by lightning was calculated using FDTD method and the lightning parameters such as peak voltage, rise time, and decay time for the lightning location and line length were analyzed. To verify the results, lightning induced voltage was measured in the field using real telecommunication line. Results from the collected data were compared with the calculated results. It was found that the rise time and the decay time were increased as the line length and the distance between the line and lightning location were increased. Also, the peak voltage was affected more by the overhead line length than by the total line length, while the rise time and the decay time were more affected by the total line length.

A Study on Three-phase Imbalance of a Power Transmission Line due to Installation of a Passive Loop Conductor (수동루프에 의한 송전선로 상불평형 발생에 관한 연구)

  • 김종형;신명철;최상열
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.31-38
    • /
    • 2003
  • Among mitigation techniques for electric and magnetic field (EMF) from an overhead transmission line a passive loop is a way that can be cheap and easily installed on the existing towers and have a satisfactory effect as well. However current induced in the passive loop causes transmission power loss and the phase imbalance increases since geometrical asymmetry of the transmission lines becomes larger. So in order to evaluate the power loss and the phase imbalance due to a passive loop, this paper represent a 345[kV] 1-circuit flat type transmission line as asymmetrical 3-phase distributed parameter line model where the effect of a passive loop is embedded in the line parameters, and then formulates differential equations. By solving these equations voltages and currents of each phase at receiving end become known. We find out that power losses occur differently at each phase and positive sequence component decreases at receiving end while negative sequence component increase. In general phase imbalance due to a passive loop is slight, but it increases in proportional to the induced current and length of section where the passive loop is installed. Thus the phase imbalance should be included in terms of cost for introducing a passive loop.

Galloping characteristics of a 1000-kV UHV iced transmission line in the full range of wind attack angles

  • Lou, Wenjuan;Wu, Huihui;Wen, Zuopeng;Liang, Hongchao
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.173-183
    • /
    • 2022
  • The galloping of iced conductors has long been a severe threat to the safety of overhead transmission lines. Compared with normal transmission lines, the ultra-high-voltage (UHV) transmission lines are more prone to galloping, and the damage caused is more severe. To control the galloping of UHV lines, it is necessary to conduct a comprehensive analysis of galloping characteristics. In this paper, a large-span 1000-kV UHV transmission line in China is taken as a practical example where an 8-bundled conductor with D-shaped icing is adopted. Galerkin method is employed for the time history calculation. For the wind attack angle range of 0°~180°, the galloping amplitudes in vertical, horizontal, and torsional directions are calculated. Furthermore, the vibration frequencies and galloping shapes are analyzed for the most severe conditions. The results show that the wind at 0°~10° attack angles can induce large torsional displacement, and this range of attack angles is also most likely to occur in reality. The galloping with largest amplitudes in all three directions occurs at the attack angle of 170° where the incoming flow is at the non-iced side, due to the strong aerodynamic instability. In addition, with wind speed increasing, galloping modes with higher frequencies appear and make the galloping shape more complex, indicating strong nonlinear behavior. Based on the galloping amplitudes of three directions, the full range of wind attack angles are divided into five galloping regions of different severity levels. The results obtained can promote the understanding of galloping and provide a reference for the anti-galloping design of UHV transmission lines.

Environmentally Friendly Design Program for HVAC Overhead Transmission Lines (HVAC 가공 송전선로 환경친화설계프로그램 TLCALC)

  • Yang, Kwang-H.;Ju, Mun-N.;Myung, Sung-H.;Shin, Koo-Y.;Lee, Sung-D.;Lee, Dong-I.
    • Proceedings of the KIEE Conference
    • /
    • 2005.05b
    • /
    • pp.67-70
    • /
    • 2005
  • HVAC transmission lines must be designed to satisfy environmental regulations. Therefore it is necessary to pre-evaluate environmental problems for transmission line designer using prediction program. In this study, environment design software, TLCALC 2001 for transmission lines was developed as a comprehensive window program. It has 6 modules that are audible noise, radio noise, television noise, magnetic field, electric field and conductor surface gradient. TLCALC 2001 solved a few problems in use of the existing foreign tools and took several advantages. Experienced designers can get the results of calculation within about 15 minutes. Because the use of TLCALC 2001 is easy and practical, this program will be usefully applied to the environmental friendly design and construction of HVAC transmission lines. In the future, it is expected that public complaints and social environmental cost will be reduced by the use of TLCALC 2001.

  • PDF