• Title/Summary/Keyword: Overflow safety

Search Result 36, Processing Time 0.038 seconds

Failure Probability Analysis of Concrete Cofferdam Considering the Overflow in Flood Season (홍수시 월류를 고려한 콘크리트 가물막이댐의 파괴확률 산정)

  • Hong, Won Pyo;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.30-38
    • /
    • 2020
  • In order to construct a dam, the diversion facility such as cofferdam and a diversion tunnel should be installed in advance. And size of a cofferdam depends on type of a main dam. According to the Korea Dam Design Standard, if the main dam is a concrete dam, design flood of the cofferdam is 1~2 years flood frequency. This means that overflow of the cofferdam occurs one time for 1 or 2 years, therefore, stability of the cofferdam should be secured against any overflow problem. In this study, failure probability analysis for the concrete cofferdam is performed considering the overflow. First of all, limit state function of the concrete cofferdam is defined for overturning, sliding and base pressure, and upstream water levels are set as El. 501 m, El. 503 m, El. 505 m, El. 507 m. Also, after literature investigation research, probabilistic characteristics of various random variables are determined, the failure probability of the concrete cofferdam is calculated using the Monte Carlo Simulation. As a result of the analysis, when the upstream water level rises, it means overflow, the failure probability increases rapidly. In particular, the failure probability is largest in case of flood loading condition. It is considered that the high upstream water level causes increase of the upstream water pressure and the uplift pressure on the foundation. In addition, among the overturning, the sliding and the base pressure, the overturing is the major cause for the cofferdam failure considering the overflow.

A Study on the Development of Overflow Cutoff Valve for Liquefied Petroleum Gas Cylinders (액화석유가스 용기용 과류차단밸브의 개발에 관한 연구)

  • Rhim Jong-Kuk
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.158-161
    • /
    • 2005
  • This research is about overflow cutoff valve for liquefied petroleum gas cylinders. This valve was developed based on Bernoulli's equation and Newton's equation. The structure of overflow cutoff valve was made by insert module instead of the ordinary valve that is used at present. Recently, the increase in use of gas for fuel in houses has resulted to more frequent occurrences of gas related accidents. In Korea, the government has made a law for the obligatory use of the cutoff valves. This cutoff valve is not ya developed. This research focuses on the use of over flow cutoff valve for LPG cylinders. If this valve is adapted, many accidents can be prevented.

A Study on Estimation of Levee Safety Map for Determining the Priority of River Maintenance (하천 유지관리 우선순위 결정을 위한 제방안전도맵 산정방법 연구)

  • Yoon, Kwang Seok;Kim, Sooyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.17-25
    • /
    • 2017
  • Owing to recent climate change, the scale of rainfall tends to increase gradually and the risk of flooding has increased. Therefore, the importance of improving the levee management and disaster response is increasing. Levee management in Korea is carried out at the level of damage recovery after the occurrence of damage. Therefore, it is necessary to develop a technology for predicting and managing the levee safety with proactive river management. In this study, a method to estimate the safety against erosion and overflow was suggested. A map of levee safety that can be used as basic data is presented by displaying the levee safety on the map. The levee erosion safety was calculated as the ratio of the internal and external force for each shore type. The levee overflow safety was calculated as the ratio of the maximum conveyance and design flood. The maximum conveyance was a discharge when the level of the river was equal to the level of the levee crown. The levee safety was classified into 5 grades: very safe, safe, normal, dangerous, and very dangerous. As a research area from downstream of Nam River Dam to Nakdong River Junction, the levee safety against erosion and overflow was estimated for all levees and all cross-sections of the river. The levee safety was displayed on a map using GIS. Through the levee safety map as a result of this study, the levee safety can be observed intuitively. Using the levee safety map, a maintenance plan for a river can be easy to build. This levee safety map can be used to help determine the priority of investment for efficient budget used.

An Experimental Study of Reservoir Failure Phenomena According to Transitional Zone: Spillway Scour During Overflow (저수지 월류 시 여수토 접속부 세굴에 따른 붕괴 현상의 실험적 연구)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Ki-Sung;Jeong, Jong-Woo;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.27-33
    • /
    • 2011
  • This study is a preliminary investigation into the development of a construction method that will protect a reservoir even during over flows caused by severe flooding. Through hydraulic modeling tests, the destructive phenomena caused by spillway-junction scour during reservoir overflow were modeled, and the effects on the embankment during such an overflow and the spillway-junction movements are discussed. The reservoir destruction model used the Tanbu reservoir, located in Gangwondo Chuncheon-si Namsanmyeon (H=22 m, L=115 m), as the model reservoir and created an embankment with a 1/60 ratio. We review the spillway-junction safety factor during overflow and embankment movement following reinforcement measures for three different cases: no reinforcement, cemented sand and gravel (CSG) reinforcement and water-blocking sheet reinforcement. The results of this study confirmed that when the spillway-junction is exposed to soil, it is very vulnerable to overflow and that a water-blocking sheet or CSG reinforcement are very effective measures in preventing embankment destruction in the long-term period.

Study on Numerical Analysis for Structural Safety Verification of Overflow Preventer System for LNG Tank (LNG탱크 수위 넘침 방지 시스템의 구조 안전성을 검증하기 위한 수치 해석에 관한 연구)

  • Ryu, Young-Chun;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1801-1806
    • /
    • 2014
  • This paper proposed the design technology for the level meter of the overflow preventer system of LNG storage tank. The parts of LNG ship should be developed under considering the cryogenic environment. Therefore, we proposed the structure of level meter to prevent overflow of LNG tank using the numerical analysis method. The proposed level meter for the overflow preventer is manufactured and the performance is verified through international authorized inspection agency.

A Study on Safety of Atmospheric Storage Tank through Detailed Analysis of Accident Case (사고사례 정밀분석을 통한 상압저장탱크의 안전에 관한 연구)

  • Yim, Ji Pyo;Park, Su Youl
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.41-48
    • /
    • 2019
  • In October 2018, a large fire occurred after an explosion in an internal floating roof tank (IFRT) that stores gasoline by wind lantern in Goyang city, Gyeonggi-do. Although there was no casualty damage, the fire inside the tank lasted for 17 hours, and caused a great wave socially, and it was a chance to review the safety of the atmospheric storage tank. In this study, the necessity of installing a flame arrester at peripheral vents was examined through the calculation of the size of ventilation pipe and ventilation rate of internal floating roof tanks in terms of the function of the peripheral vent. Next, the necessity of the emergency shut-off valve linked with the high-level alarm to prevent the overflow of the atmospheric storage tank was confirmed by LOPA. Finally, safety measures to prevent overpressure, flame propagation and overflow which cause major accidents in atmospheric storage tank are suggested.

A Study on Reconstruction Models of Side-channel Spillway for Discharge Capacity Improvement (측수로형 여수로의 홍수배제능력증대를 위한 월류부 개축방안에 관한 연구)

  • Park, Sae-Hoon;Moon, Young-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.9-18
    • /
    • 2007
  • The small and medium sized dams have the fill dam type of a lot of occasions, which are often weak in cases of major floods. For this reason, although a countermeasure is in great need, due to the importance of the facilities and financial situations, no direct safety measures have been taken. In this study, in order to minimize construction expenditure for practical safety measures in cases of major floods, the overflow section of spillway has been analyzed focusing on how the overflow capacity will increase in the case of partially rebuilding a part of the overflow section of spillway favorable for hydraulic conditions. The labyrinth weir and movable weir was chosen for reconstruction models of the overflow section. Moreover, for analyzing the after-effects of the reconstruction, a small scale dam was temporarily chosen for various experiments such as the hydraulic model testing and the three dimension numerical evaluation through the use of Flow-3D.

An approximate study on flood reduction effect depending upon weir or gate type of lateral overflow structure of washland (강변저류지 월류부에서 월류제 또는 수문 형식에 따른 홍수저감효과에 관한 개략적 연구)

  • Ahn, Tae Jin
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.573-583
    • /
    • 2013
  • Construction of large-scale structures such as dams would be suggested actively to cope with change of flood characteristics caused by climate change. However, due to environmental, economic and political issues, dams are not ideally constructed. Thus flood damage reduction planning projects would get started including washland or detention pond for sharing the flood in basin. The washland made artificially by human being is an area of floodplain surrounded by bank to be intentionally inundated by overflowing through overflow structure adjacent to main channel during flood season. Flood reduction capacity at just downstream of each washland could be affected by type, length, and crest elevation of overflow structure in addition to shape of design hydrograph, storage volume of washland, etc.. In this study flood reduction effects of washland are estimated for overflow weir type and gate type to compare the results of flood reduction respectively subjected to given hydrograph in sample site, the Cheongmicheon stream. It has been shown that even if gate type at overflow structure could yield more flood reduction than overflow weir type, economic aspect such as initial cost, operation cost and maintenance cost should be considered to select the type of overflow structure because flood reduction rate by gate type could not be significant value from engineering point of view.