• 제목/요약/키워드: Overburden pressure

검색결과 81건 처리시간 0.027초

대형삼축압축시험장비 구축과 도상자갈의 정적압축시험 평가 (Building of Large Triaxial Testing Apparatus and Static Triaxial Testing for Railway Ballast)

  • 이성진;김윤기;이일화;이준석;박재준
    • 한국철도학회논문집
    • /
    • 제13권1호
    • /
    • pp.84-91
    • /
    • 2010
  • 본 연구에서는 철도, 도로 등 대형 성토지반구조물의 주요 지반재료인 입경이 큰 조립재료에 대해 전단강도, 변형계수, 응력-변형 거동과 같은 지반공학적 설계정수를 평가 산정할 수 있는 대형삼축압축시험장비를 구축하고, 이를 활용한 도상자갈재료에 대한 정적삼축압축시험 결과를 통해 그 의미와 적용 가능성을 제시하였다. 도상자갈과 같이 지표면에 설치되어 포화 가능성이 낮고, 구속압이 작은 경우에는 진공압(vacuum)으로 구속압을 제어하는 방식이 효과적임을 확인할 수 있었다. 도상자갈 재료의 삼축압축시험 결과로부터 구속압별 전단강도, 변형계수, 입자파쇄 영향 등의 합리적인 결과와 경향을 확인하였으며, 모암의 입자강도, 구속압 등의 영향을 고려하여 전단강도 포락선을 예측할 수 있는 비선형식에 적합한 재료 상수를 산정, 적용하여 실험 결과를 근접하게 재현해낼 수 있었다.

초임계상 이산화탄소 주입으로 인한 공극수 대체에 관한 공극 규모의 마이크로모델 연구 (Pore-scale Investigation on Displacement of Porewater by Supercritical CO2 Injection Using a Micromodel)

  • 박보경;이민희;왕수균
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권3호
    • /
    • pp.35-48
    • /
    • 2016
  • A micromodel was applied to estimate the effects of geological conditions and injection methods on displacement of resident porewater by injecting scCO2 in the pore scale. Binary images from image analysis were used to distinguish scCO2-filled-pores from other pore structure. CO2 flooding followed by porewater displacement, fingering migration, preferential flow and bypassing were observed during scCO2 injection experiments. Effects of pressure, temperature, salinity, flow rate, and injection methods on storage efficiency in micromodels were represented and examined in terms of areal displacement efficiency. The measurements revealed that the areal displacement efficiency at equilibrium decreases as the salinity increases, whereas it increases as the pressure and temperature increases. It may result from that the overburden pressure and porewater salinity can affect the CO2 solubility in water and the hydrophilicity of silica surfaces, while the neighboring temperature has a significant effect on viscosity of scCO2. Increased flow rate could create more preferential flow paths and decrease the areal displacement efficiency. Compared to the continuous injection of scCO2, the pulse-type injection reduced the probability for occurrence of fingering, subsequently preferential flow paths, and recorded higher areal displacement efficiency. More detailed explanation may need further studies based on closer experimental observations.

지하차도 부력저감을 위한 유도배수공법의 적용성 검토: 수치해석적 연구 (Applicability examinations of induced drainage system for reduction of uplift pressure in underpass structures: Numerical study)

  • 조선아;진규남;심영종;조계춘
    • 한국터널지하공간학회 논문집
    • /
    • 제15권2호
    • /
    • pp.123-134
    • /
    • 2013
  • 도시지역에 주로 건설되는 지하차도는 기존의 터널과 달리 지표면에 근접한 지반에 시공되어 지하수의 양압력에 의한 구조물 부상 및 손상이 발생할 수 있다. 도심지 지하차도의 기존 설계방법(사하중 증가 또는 영구앵커 등의 부력 대처공법)은 지나치게 안전측인 보수적 설계를 수행하고 있어 시공기간 및 경제적 비용 증가를 초래한다. 최근 이를 보완하는 공법으로 영구배수공법 사용이 증가하고 있으나 대상 토질과 지하수 등을 고려한 적절한 분석과정 없이 선정되는 실정이다. 따라서 본 연구에서는 최근 Y지역에 설치되는 영구배수공법의 일종인 유도배수공법을 대상으로 지반공학적 관점에서 합리적인 설계체계를 수립하기 위해 지하수위 변화, 지하차도 옹벽 높이, 기초지반 조건 등 다양한 매개변수에 대한 수치해석을 수행하였다. 본 연구 결과로부터 유도배수공법은 지하수에 의해 발생하는 양압력을 효과적으로 저감시킬 수 있음을 확인하였다.

2차원 연속체 해석에 의한 지하공동 형상비별 안정성 평가 비교 (A comparative study on stability evaluation of caverns by 2D continuum analysis in terms of shape factor)

  • 유광호;정지성
    • 한국터널지하공간학회 논문집
    • /
    • 제10권2호
    • /
    • pp.193-205
    • /
    • 2008
  • 현재 국내에서는 유류 지하 비축 공동, 식품 저장 공동 등과 같은 지하구조물의 건설이 증가하고 있다. 이러한 지하공동의 안정성은 형상 및 크기에 영향을 많이 받는다. 따라서 본 연구는 지하공동의 형상이 안정성에 미치는 영향을 안전율을 중심으로 비교 분석하였다. 이를 위해 5가지의 공동 형상비를 가정하고 암반등급, 토피고 및 측압계수를 달리하여 민감도분석을 실시하였다. 공동의 지보재는 각각의 공동 형상, 크기 및 암반등급을 고려하여 적절한 양의 록볼트와 숏크리트로 보강하였다. 공동의 안정성은 강도감소기법을 이용하여 수치해석에 의해 얻은 안전율을 사용하여 평가되었다. 본 논문은 향후 지하공동 설계 및 안정성 평가에 도움이 될 수 있을 것으로 기대된다.

  • PDF

점성토지반에 축조한 제방의 변형추정 -고흥만 방수제 사례연구를 중심으로- (A Deformation Prediction of the Embankment on the Soft Clayey Foundation - A Case Study of the Sea Dike of Koheung Bay -)

  • 오재화;이문수
    • 한국농공학회지
    • /
    • 제40권4호
    • /
    • pp.94-102
    • /
    • 1998
  • This paper aims at developing the prediction technique of the deformation for the embankment such as sea dike and shore protection relevant to reclamation project along the southern coast of the Korean Peninsula. Generally total deformation of a sea dike over clayey foundation are composed of immediate settlement, plastic deformation and consolidation settlement. Plastic deformation occurs when the ultimate bearing capacity is less than overburden pressure containing the stress increment due to the construction of an embankment. The reliable prediction of total settlement is very important since deformed final geometry of sea dike is directly connected for analysing the safety of the long-term slope failure and piping. During this study, plastic deformation, major part of deformation was analysed using the program developed by authors, whereas immediate settlement and consolidation settlement were predicted by Mochinaka and Sena's method and Terzaghi's 1-dimensional theory of consolidation respectively. In order to validate the prediction technique for the deformation, a case study of Koheung Bay reclamation works was carried out. A good agreement was obtained between observation and prediction, which means the applicability of the technique.

  • PDF

대형 Calibration Chamber System을 이용한 ${{\sigma}_v}'-D_r-N$ 상관관계 연구 (A Study of ${{\sigma}_v}'-D_r-N$ Correlation using Large Calibration Chamber System)

  • 최성근;김상인;이충호;김동후;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1175-1182
    • /
    • 2005
  • Using KUCCS, which enables real-time monitoring and controlling, the various boundary condition and in-situ field stress condition was simulated, to derive the correlation among ${{\sigma}_v}'-Dr-N$in domestic sandy soils. Soil specimens, having various relative density and confined stress, were formulated to evaluate N-value from the SPT. and Pile Driving Analyzer, PDA, was employed as a measuring device for the energy transfer efficiency in the rod. From the quantitative analysis of N-value, the correlating equation, $N_{60}/{D_r}^2=16.35+14.45{{\sigma}_v}'$ was obtained on the basis of Skempton's method(1986). More reliable soil parameters can be obtained from the N-value by using this study which considered regional characters and the correlation among ${{\sigma}_v}'-Dr-N$.

  • PDF

전기화학 기계적 연마를 이용한 Cu 배선의 평탄화 (Planarizaiton of Cu Interconnect using ECMP Process)

  • 정석훈;서헌덕;박범영;박재홍;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제20권3호
    • /
    • pp.213-217
    • /
    • 2007
  • Copper has been used as an interconnect material in the fabrication of semiconductor devices, because of its higher electrical conductivity and superior electro-migration resistance. Chemical mechanical polishing(CMP) technique is required to planarize the overburden Cu film in an interconnect process. Various problems such as dishing, erosion, and delamination are caused by the high pressure and chemical effects in the Cu CMP process. But these problems have to be solved for the fabrication of the next generation semiconductor devices. Therefore, new process which is electro-chemical mechanical polishing(ECMP) or electro-chemical mechanical planarization was introduced to solve the technical difficulties and problems in CMP process. In the ECMP process, Cu ions are dissolved electrochemically by the applying an anodic potential energy on the Cu surface in an electrolyte. And then, Cu complex layer are mechanically removed by the mechanical effects between pad and abrasive. This paper focuses on the manufacturing of ECMP system and its process. ECMP equipment which has better performance and stability was manufactured for the planarization process.

Stress Distribution of Buried Concrete Pipe Under Various Environmental Conditions

  • Lee, Janggeun;Kang, Jae Mo;Ban, Hoki;Moon, Changyeul
    • 한국지반환경공학회 논문집
    • /
    • 제17권12호
    • /
    • pp.65-72
    • /
    • 2016
  • There are numerous factors that affect stress distribution in a buried pipe, such as the shape, size, and stiffness of the pipe, its burial depth, and the stiffness of the surrounding soil. In addition, the pipe can benefit from the soil arching effect to some extent, through which the overburden and surcharge pressure at the crown can be carried by the adjacent soil. As a result, the buried pipe needs to support only a portion of the load that is not transferred to the adjacent soil. This paper presents numerical efforts to investigate the stress distribution in the buried concrete pipe under various environmental conditions. To that end, a nonlinear elasto-plastic model for backfill materials was implemented into finite element software by a user-defined subroutine (user material, or UMAT) to more precisely analyze the soil behavior surrounding a buried concrete pipe subjected to surface loading. In addition, three different backfill materials with a native soil were selected to examine the material-specific stress distribution in pipe. The environmental conditions considering in this study the loading effect and void effects were investigated using finite element method. The simulation results provide information on how the pressures are redistributed, and how the buried concrete pipe behaves under various environmental conditions.

연직배수재가 타설된 지반의 복합통수능 해석 (Composite Discharge Capacity Analysis of Vertical Drain Installed in Ground)

  • 김창영;곽노경;이송
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1167-1174
    • /
    • 2008
  • Vertical drain method, which is one of the soft ground improvement methods, shorten s drain path to accelerate consolidation process and is applied in many sites. At a recent, composite discharge capacity experiment that analyze discharge amount by consolidation behavior with overburden pressure of soft ground in laboratory, simulates similarly with actuality. Geotechnical engineering problems such a s soft ground improvement are solved by numerical analysis by development of computer and numerical analysis techniques. Numerical analysis does that result is contrary by user's inexperience for choice of constitution model and application of analysis method. Therefore, this thesis experiments on composite discharge capacity test and study discharge capacity of drain and consolidation behavior of soft ground installed prefabricated vertical drain boards. Also, This thesis studied reasonable input parameters and constitution model by compare results of composite discharge capacity test and numerical analysis using PLAXIS that is 2D finial element numerical analysis program.

  • PDF

A NEW CPT-BASED METHOD FOR UNDRAINED SHEAR STRENGTH ESTIMATION OF CLAYS

  • Lee, Jun-Hwan
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 3차
    • /
    • pp.18-23
    • /
    • 2010
  • The estimation of the undrained shear strength $s_u$ for clays using CPT results has been mainly based on the cone factor $N_k$. In this study, a new CPT-based method for the estimation of the undrained shear strength $s_u$ is presented. This aims at reducing uncertainties for the estimation of $s_u$ and enhancing the application of CPT results in more effective manner. For this purpose, a site located at a marine clay deposit is selected and test results from extensive experimental testing program are adopted. The new method defines a direct correlation between the undrained shear strength $s_u$ and the cone resistance $q_t$, excluding the procedure of the overburden pressure correction and therefore undisturbed soil sampling process. In order to verify the new CPT-based method, additional test sites and example sites from literature, which consist of a variety of soil conditions, are selected and examined. It is observed that values of su obtained from the proposed method are in good agreements with measured values of $s_u$ for all the selected verification cases.

  • PDF