• Title/Summary/Keyword: Overbreak

Search Result 35, Processing Time 0.021 seconds

The Ground Reinforcement on Daylight Collapsed Block in Driving Work at the National Road No. 3 Line (국도 3호선 터널건설 공사 중 붕락구간에 대한 지반보강)

  • 천병식;정덕교;이태우;정진교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.14-22
    • /
    • 1999
  • Daylight collapse have been occurred by about 6.$^{0}$ m deep at ground surface which connected to the ground surface and excessive overbreak have been occurred by the space and height of 3.$^1$~6.$^2$m at crown head part of the tunnel during tunnelling of lower-half part after completing upper-half part on tunnelling of a phyllite mountain by NATM method at the construction work of two way-double track national road. This study is a successful illustration case of earth improvement by confirming structural safety of the tunnel in a whole through solving the cause of the tunnel collapse and the work have completed successfully through applying such earth strengthening method as cement mortarㆍcement milk injection, S.G.R, steel pipe reinforced multi-step grouting etc.

  • PDF

Numerical Modelling of Tunnel Blasting (터널발파의 수치해석적 모델링)

  • 이인모;최종원;김상균;김동현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.133-140
    • /
    • 2000
  • Drilling and blasting method for excavating rock mass is generally used in underground construction; but this technique has some shortcomings. For instance, rock mass damage is inevitable during drilling and blasting, and blast-induced vibration frequently causes some problems. Until now, field measurement method is used to predict the overbreak and vibration; but it has many limitations. Therefore, numerical analysis method is needed to overcome such limitations, and to estimate and predict damage and vibration due to tunnel blasting in the design stage. In this study, damage zone of rock mass due to stoping and contour blasting is compared based on standard tunnel blasting pattern, and the propriety of the standard tunnel blasting pattern is estimated. Then, blasting pattern is optimized so that the damage zone due to sloping blasting with reduced charge is consistent with that due to contour blasting.

  • PDF

Mechanical Behavior and Cracking Characteristics of Tunnel Lining by Model Experiment (모형 실험에 의한 터널 복공의 역학적 거동 및 균열 특성에 관한 연구)

  • 이대혁;김영근;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.1
    • /
    • pp.53-66
    • /
    • 1998
  • Considering the mechanical cracking in the concrete lining of tunnels occurring in relatively short period of time after the construction, there is a need for the study on the mechanical behavior and the cracking characteristics of double lining support system(shotcrete and concrete lining). For the proposed study, downscaled lining models of Kyung-Bu High Speed Railway tunnels were tested. Most longitudinal cracks at about 93 percentage developed within 30 arch degree from the vault. Cracking load was about 30 percentage of the failure load and the deflection under the cracking load was 10 percentage of the deflection under the failure load. The overbreak around the vault contributed to the reduction of the capacity for cracking and failure by the percentage greater than the reduced effective depth. Of several rock block types considered in this research, the triangular block was the most critical, and the right triangular block under eccentric load was secondly critical for the stability of the tunnel lining system. The dimensionless support reaction curves were derived from the experimental results for single and double lining. The general equation to compute the designed flexural moment was modified.

  • PDF

A study on the cracking of tunnel lining by measurement and numerical analysis (계측 및 수치해석을 통한 터널 라이닝의 균열 원인 연구)

  • Hwang, Hak;Jung, Hun-Chul;Kim, Yu-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.33-40
    • /
    • 2001
  • In this research, the cracking of tunnel concrete lining was investigated and analyzed through long-term measurement and nonlinear numerical analysis. For one year after the casting of lining, the stresses and strains were measured by the sensors installed in hard rock tunnel lining. The measurements showed that only small stresses which were less than cracking stress occurred in every survey sections regardless of sensor directions. It could be induced that the external load applied to the lining was small or ignorable. Also, it was carried out short-term numerical analysis based on such site condition as ambient temperature, the- degree of overbreak and mold staying period. Long-term numerical analysis based on creep & shrinkage and nonlinear cracking was carried out. The output showed that construction condition and ambient environments could make the lining concrete crack without external loads. The cracks formed in this process does not indicate the structural instability of the tunnel.

  • PDF

Development of Cross Section Management System in Tunnel using Terrestrial Laser Scanning Data (지상 레이저 스캐닝 자료를 이용한 터널단면관리시스템 개발)

  • Roh, Tae-Ho;Kim, Jin-Soo;Lee, Young-Do
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.90-104
    • /
    • 2008
  • Laser scanning technology with high positional accuracy and high density will be widely applied to vast range of fields including geomatics. Especially, the development of laser scanning technology enabling long range information extraction is increasing its full use in civil engineering. This study taps into the strengths of a terrestrial laser scanning technique to develop a tunnel cross section management system that can be practically employed for determining the cross section of tunnels more promptly and accurately. Three dimensional data with high density were obtained in a prompt and accurate manner using a terrestrial laser scanner. Data processing was then conducted to promptly determine arbitrary cross sections at 0.1meter, 0.5meter and 1.0meter intervals. A laser scanning technique was also used to quickly and accurately calculate the overbreak and underbreak of both each cross section and the entire tunnel section. As the developed system utilizes vast amounts of data, it was possible to promptly determine the shape of arbitrary cross section and to calculate the overbreak and underbreak more accurately with higher area precision. It is expected, therefore, that the system will not only enable more efficient and cost effective tunnel drilling management and monitoring but also will provide a basis for future construction and management of tunnel cross section.

  • PDF

Tunnel Stability Assessment Considering Rock Damage from Blasting Near to Excavation Line (굴착선 주변공 발파의 암반손상을 고려한 터널 안정성 검토)

  • 이인모;윤현진;이형주;이상돈;박봉기
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.167-178
    • /
    • 2003
  • Damage and overbreak of the remaining rock induced by blasting can not be avoided during tunnel construction which may result in either short-term or long-term tunnel instability. Therefore, in this paper, a methodology to take into account the effect of blast-induced damage in tunnel stability assessment is proposed. Dynamic numerical analysis was executed to evaluate damage and overbreak of the remaining rock for the most common blasting pattern in road tunnel. Rock damage was quantified by utilizing the damage variable factor which is adopted proposed in continuum damage mechanics. The damaged rock stiffness and the damaged failure criteria are used to consider the effect of rock damage in tunnel stability analysis. The damaged geological strength index of the damaged rock was newly proposed from the relationship between deformation modulus and geological strength index. Also the Hoek-Brown failure criteria of the damaged rock was obtained using the damaged geological strength index. Analysing the tunnel stability with the consideration of the blast-induced damage of remaining rock, it was found that the extend of plastic zone and deformation increased compared to the undamaged rock. Therefore the short-term or long-term tunnel stability will be threatened when the rock damage from blasting is ignored in the tunnel stability analysis.

A Study on Optimized Blasting Pressure Considering Damage Zone for Railway Tunnel (손상영역을 고려한 철도터널의 최적의 발파압력 선정에 관한 연구)

  • Park, Jong-Ho;Um, Ki-Yung;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1162-1170
    • /
    • 2011
  • Since there is 70% of the land in South Korea is forest, tunnel constructions by blasting are common for building railways and roads. The damage to the bedrock and the development of overbreak near the face of the tunnel during the blasting directly affect the safety of the tunnel and the maintenance after the construction. Therefore, there is a need to investigate the damage zone in the bedrock after the blasting. The damage zone changes the properties of the bedrock and decreases the safety. Especially, the coefficient of permeability of the damaged bedrock increases dramatically, which is considered very important in construction. There is a lack of research on the damage that bedrock is received with respect to the amount of explosives in blasting, which is required for the design of optimum support in blast excavation that maximizes the support of the bedrock. Therefore, in this research, numerical analysis was performed based on the field experiment data in order to understand the mechanical characteristics of the bedrock after to the blast load and to analyze the damage that the bedrock receives from the blast load. In addition, a method was proposed for selecting the optimum blast pressure for train tunnel design with respect to the damage zone.

  • PDF

Stereo-photogrammetry Analysis for Over-break Control (여굴 제어를 위한 입체사진측량기법 분석)

  • Kim, Byung-Ryeol;Jeong, Min-Su;Jin, Yeon-Ho;Choi, Sung-Oong
    • Explosives and Blasting
    • /
    • v.36 no.1
    • /
    • pp.12-19
    • /
    • 2018
  • When an underground limestone mine selects room-and-pillar mining method, in which the stability of mine openings is maintained by leaving safety pillars, the stability of safety pillars is always incompatible with their productivity. Therefore, the engineering decision for stability and productivity is essential. In this study, a progress of excavation faces by conventional blasting pattern has been examined in field for investigating over-break and stereo-photogrammetry method has been applied to this field measurement for improvement of accuracy. Also this result has been reflected instantly to composite blasting pattern by feedback, for minimizing overbreak. Field tests showed the relevant results that $3.5m^2$ in over-break out of $70m^2$ in total excavation face has been decreased, that is 5% of reduction rate in maximum.

Geological Survey in a Construction Area of Taegu-Pohang Highway (대구-포항간 고속도로 7공구의 지질조사 연구)

  • 이병주;선우춘;한공창
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.497-505
    • /
    • 2000
  • The surveyed area is mainly distributed by the sedimentary rocks, tuffs, and esites in Cretaceous age and acidic and basic dikes are intruded in these rocks. The principle discontinuities are represented by beddings, joints and faults. The trends of the beddings of sedimentary rocks develop as E-W direction in the start area. However, they are gradually bending and finally their trends are N-S direction in terminal area. In the sedimentary rocks the 3∼4 joint sets are distributed and in dikes joints are more scattered. The majority of joints are highly dipped. Sampo fault which has NE-SW trend makes a valley and NW trending normal faults are well developed at 50k+600 to 51k+000 area. During the construction of tunnel the orientation of discontinuities will not significantly influence on the stability of excavation. Since the rock mass is extensively jointed, the overbreak in tunnel wall may be placed.

  • PDF

Analysis of Granite Behavior In Blasting Using Microplane Constitutive Model (마이크로플레인 모델을 이용한 발파시 화강암의 거동해석)

  • Zi, Goangseup;Moon, Sang-Mo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.87-100
    • /
    • 2006
  • A kinematically constrained microplane constitutive model is developed for intact granite. The model is verified by fitting the experimented data of Westerly granite and Bonnet granite. Using the model with the standard finite element method, the behavior of the intact granite subjected blasting impact is studied. What is studied includes the attenuation of the blasting waves, the size of the fractured zone and the effect of the charge condition to avoid overbreak of the rock mass. The model developed captures the energy loss due to the inelastic behavior and the microcracking of granite during blasting very well. The attenuation of the blasting waves calculated based on the model is much more than that based on the linear-elastic constitutive law. The size of damaged (or fractured) zone is calculated directly from the principal strain as blasting impact is spreading, not like in the case with the linear elasticity model.

  • PDF