• Title/Summary/Keyword: Overall thermal performance

Search Result 250, Processing Time 0.025 seconds

Thermal Performance Characteristics of Closed-Wet Cooling Tower (밀폐형 냉각탑의 열성능 특성에 관한 실험적 연구)

  • Sarker, M.M.A.;Kim, E.P.;Moon, C.G.;Yoon, J.I.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.88-92
    • /
    • 2005
  • The experiment of thermal performance about closed-wet cooling tower was conducted in this study. A closed cooling tower is a device similar to a general cooling tower, but with cooling tower replaced by a heat exchanger. The test section for this experiment has the process that the cooling water flows from the top of the heat exchanger to the bottom side in the inner part of the tube, and spray water flows in the gravitational direction in the outer side. Air comes in direct contact with the spray water at the outer side of the tube while passing from the lower the upper part having a counterflow to the spray water. The heat transfer pipe used in this experiment is a bare-type tube having an outer diameter of 15.88mm. The heat exchanger is consisted of seven rows and fifteen columns. In this experiment, thermal performance of the cooling tower is derived from overall heat transfer coefficients between the process fluid and sprayed water and volumetric overall mass transfer coefficient between sprayed water and air.

  • PDF

Thermal Performance Test of Liquid Cooling Type Cold Plates for Robot Cooling (로봇 냉각을 위한 수냉식 냉각판의 열적 성능 평가)

  • Karng, Sanrng-Woo;Lee, Suk-Won;Hwang, Kyu-Dae;Kim, Seo-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1864-1869
    • /
    • 2007
  • In this study, we compare thermal performance between four different types of cold plates for humanoid robot cooling. Two commercially available cold plates made of copper have different dimensions and internal flow paths: One has $20{\times}20$ $mm^2$ base area with micro-channels and the other has $62.5{\times}62.5$ $mm^2$ base area with 85 round pin-fins. And two different types of cold plates of $20{\times}20$ $mm^2$ base area with 7 mm high are made of PC (polycarbonate), which aims to reduce the weight of cooling system. All cold plates are mounted on a $20{\times}20$ $mm^2$ copper block with two cartridge heaters of 30 $W/cm^2$. The overall heat transfer coefficient and thermal resistances for the liquid-cooled cold plates are obtained. The copper cold plate with micro-channels showed the best performance. Polycarbonate cold plates display fairly good thermal performance with more reduced system weight.

  • PDF

The Numerical Analysis on Insulation Performance with Respect to the Envelope Geometries and Array of Evacuated Powder Panel in Rigid Foam/Evacuated Powder Composite Panels (혼합초단열재에서 진공분말패널의 외피형상 및 패널배열에 따른 단열성능해석)

  • Hong, J.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.497-509
    • /
    • 1996
  • Evacuated powder insulations have long been known to have better thermal performance than existing commercially available insulators, such as fiber glass and CFC-blown foam. To make a composite powder panel, a series of individually evacuated panels was encapsulated in a rigid closed cell foam matrix. The panels were encapsulated in a thin glass sheet barrier to preserve the vacuum. The thermal conductivity of the individual panel was found to be $0.0062W/m^{\circ}K$ by experiment and the polyurethane foam above had a thermal conductivity of $0.024W/m^{\circ}K$. In this study, numerical analysis using finite element method was carried out to investigate insulation performance of rigid foam/evacuated powder composite panel with respect to panel geometries such as panel pitch, panel aspect ratio and panel area ratio. Numerical analysis has indicated that more optimal vacuum panel geometries, much lower overall thermal conductivities can be achieved.

  • PDF

Performance Test of Liquid Cooling Type Cold Plates for Robot Cooling (로봇 냉각을 위한 수냉식 냉각판의 성능 평가)

  • Lee, Suk-Won;Karng, Sarng-Woo;Hwang, Kyu-Dae;Kim, Seo-Young;Rhee, Gwang-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 2008
  • The increase of system weight due to installation of cooling devices adds electrical and mechanical loads of humanoid robot, and in return, results in much heat. Therefore, the weight of cooling system is a critical issue for robot cooling. In this study, we propose non-metallic cold plates to deal with such problems. We compare thermal performances between one metallic cold plate and five different types of non-metallic cold plates. A metallic cold plate is totally made of copper. Five non-metallic PC(polycarbonate) cold plates, which are designed to reduce the overall weight of robot cooling system, are composed of a polycarbonate cover with different types of base plate. The overall heat transfer coefficients per unit mass and thermal resistances are obtained for the cold plates. The metallic cold plate shows the best thermal performance. It is interesting to note that the PC cold plate with an aluminum base plate with 18 channels shows the best overall heat transfer coefficient per unit mass. Most polycarbonate cold plates display fairly comparable thermal performance with more reduced system weight compared to the metallic cold plate.

Implementation of a Thermal Imaging System with Focal Plane Array Typed Sensor (초점면 배열 방식의 열상카메라 시스템의 구현)

  • 박세화;원동혁;오세중;윤대섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.396-403
    • /
    • 2000
  • A thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main part of the system is a thermal camera in which a focal plane array typed sensor is introduced. The sensor detects the mid-range infrared spectrum of target objects and then it outputs a generic video signal which should be processed to form a frame thermal image. Here, a digital signal processor(DSP) is applied for the high speed processing of the sensor signals. The DSP controls analog-to-digital converter, performs correction algorithms and outputs the frame thermal data to frame buffers. With the frame buffers can be generated a NTSC signal and transferred the frame data to personal computer(PC) for the analysis and a monitoring of the thermal scenes. By performing the signal processing functions in the DSP the overall system achieves a simple configuration. Several experimental results indicate the performance of the overall system.

  • PDF

A Study on Thermal Performance of an Impinging Cooling Module for High Power LEDs (고출력 LED에 적용한 분사냉각모듈의 열성능에 관한 연구)

  • Lee, Dong Myung;Park, Sang Hee;Kim, Dongjoo;Kim, Kyoungjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.13-19
    • /
    • 2012
  • Thermal performance of an impinging cooling module for 150 W class high power LEDs have been investigated numerically and experimentally. Parametric studies were performed to compare the effect of several design parameters such as nozzle number, nozzle spacing, coolant flow rate, and impinging distance. The experiments were also carried out in order to validate the numerical results and the comparison between the experimental and numerical results showed good agreement. It is found that the overall thermal resistance of impinging cooling module strongly depends on the nozzle number, nozzle spacing, flow rate, and impinging distance. This results showed the optimized operating condition when number of nozzles is 25, nozzles spacing is 4mm, flow rate is 2.70 lpm, distance between nozzles and impinging surface is 2 mm.

Evaporator Thermal Performance Prediction on Automotive Air Conditioning System (자동차 공조장치용 증발기의 전열 성능 예측)

  • Kim, J.S.;Kang, J.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.297-305
    • /
    • 1991
  • Recently, automotive air conditioning system manufacturers have been made a great efforts on the system compactness and high efficiency. This growing interest comes improvements in evaporator thermal performance, one of the most important factors affecting the performance of air conditioning system. In order to improve design of compact type evaporator, this study executes performs to develop a computer program for evaporator thermal performance prediction of automotive air conditioning system. The brief summaries of this study are as follows: 1) To predict the overall thermal performance of serpentine type evaporator, the new simulating method is developed. 2) The calculations are performed as functions of oil mass concentration and refrigerant two-phase distribution at inlet manifold of evaporator. 3) The validity of this simulating program is confirmed by comparing the predicted thermal performance results to experimental results of practical available evaporator. 4) Based on these results, suggestions are made to improve the thermal performance of evaporator.

  • PDF

The Performance and Efficiency Analysis of PVT system : A Review (선행 연구된 태양광열 복합 시스템의 문헌 검토를 통한 성능 및 효율분석)

  • Euh, Seung-Hee;Kim, Dae-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.57-66
    • /
    • 2011
  • A Photovoltaic/Thermal(PVT) solar system consists of PV module and thermal absorber plate which convert the absorbed solar radiation into electricity and heat. Meaningful researches and development (R&D) on the PVT technologies have been performed since the 1970s. This paper presents a review of the previous works covering the various types of PVT and their performance analysis in terms of electrical and thermal efficiency. This review compares electrical and thermal efficiency of the different types of PVT collectors and analyzes the parameters affecting PVT performance. Based on the literature review, box channel type PVT with unglazed, or flat plate PVT with glazed have the highest efficiency among them. From the literature review, R&D should be carried out aiming at improving their overall electrical and thermal efficiency, cutting down the cost, and making them more competitive in the energy consumption market.

The Performance and Efficiency Analysis of PVT system : A Review (선행 연구된 태양광열 복합 시스템의 문헌 검토를 통한 성능 및 효율분석)

  • Euh, Seung-Hee;Kim, Dae-Hyun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.250-255
    • /
    • 2011
  • A Photovoltaic/Thermal(PVT) solar system consists of PV module and thermal absorber plate which convert the absorbed solar radiation into electricity and heat. Meaningful researches and development (R&D) on the PVT technologies have been performed since the 1970s. This paper presents a review of the previous works covering the various types of PVT and their performance analysis in terms of electrical and thermal efficiency. This review compares electrical and thermal efficiency of the different types of PVT collectors and analyzes the parameters affecting PVT performance. Based on the literature review, box charmel type PVT with unglazed, or flat plate PVT with glazed have the highest efficiency among them. From the literature review, R&D should be carried out aiming at improving their overall electrical and thermal efficiency and cutting down the cost, making them more competitive in the energy consumption market.

  • PDF

Numerical study on overall thermal performance in SAH duct with compound roughness of V-shaped ribs and dimples (V 형 rib과 dimple로 구성된 SAH 덕트에서의 총괄 열성능에 대한 수치적 연구)

  • Kumar, Anil;Kim, Man-Hoe
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.43-55
    • /
    • 2015
  • This paper presents the thermal hydraulic performance of a three dimensional rib-roughened solar air heater (SAH) duct with the one principal wall subjected to uniform heat flux. The SAH duct has aspect ratio of 12.0 and the Reynolds number ranges from 2000 to 12000. The roughness has relative rib height of 0.045, ratio of dimple depth to print diameter of 0.5 and rib pitch ratio of 8.0. The flow attack angle is varied from $35^{\circ}$ to $70^{\circ}$. Various turbulent flow models are used for the heat transfer and fluid flow analysis and their results are compared with the experimental results for smooth surfaces. The computational fluid dynamics (CFD) results based on the renormalization k-epsilon model are in better outcomes compared with the experimental data. This model is used to calculate heat transfer and fluid flow in SAH duct with the compound roughness of V-shaped ribs and dimples. The overall thermal performance based on equal pumping power is found to be the highest (2.18) for flow attack angle of $55^{\circ}$. The thermo-hydraulic performance for V-pattern shaped ribs combined with dimple ribs is higher than that for dimple rib shape and V-pattern rib shape air duct.