• Title/Summary/Keyword: Overall thermal performance

Search Result 250, Processing Time 0.023 seconds

Thermal Flow Analysis of Vehicle Engine Cooling System

  • Park, Kyoung-Suk;Won, Jong-Phil;Heo, Hyung-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.975-985
    • /
    • 2002
  • This paper deals with theoretical model developed for analyzing the heat transfer of automotive cooling systems. The model has a modular structure which links various cooling system submodels. From the model, heat transfer rate of automotive cooling systems can be predicted, providing useful information at the early stages of the design and development. The aim of the study is to develop a simulation program for automotive cooling system analysis and a performance analysis program for analyzing heat exchanger. Heat release rate from combustion gas to coolant through the cylinder wall in engine cylinder was analysed by using an engine cycle simulation program. In this paper, details of each submodel are described together with the overall structure of the vehicle model.

A Fuel Cell Generation System with a Fuel Cell Simulator

  • Lee Tae-Won;Jang Su-Jin;Jang Han-Keun;Won Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.55-61
    • /
    • 2005
  • A fuel cell (FC) system includes a fuel processor plus subsystems to manage air, water, and thermal energy, and electric power. The overall system is high-priced and needs peripheral devices. In this paper, a FC simulator is designed and constructed with the electrical characteristics of a fuel cell generation (FCG) system, using uses a simple buck converter to overcome these disadvantages. The characteristic voltage and current (V-I) curve for the FC simulator is controlled by a simplified linear function. In addition, to verify FCG system performance and operation, a full-bridge DC/DC converter and a single-phase DC/AC inverter were designed and constructed for FC applications. Close agreement between the simulation and experimental results confirms the validity and usefulness of the proposed FC simulator.

Laser Microfabrication of Micro Actuator (레이저 미세 가공기술을 이용한 마이크로 엑츄에이터의 개발)

  • 김광열;고상철;박현기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.932-937
    • /
    • 2002
  • The polyimide nozzle and silicon restrictor inside a thermal micro actuator have been fabricated using state of the art laser micromachining methods. Numerical models of fluid dynamics inside the actuator chamber and nozzle are presented. The models include fluid flow from reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of refill through restrictor. Since high tapered nozzle and restrictor are very important parameters for overall actuator performance design, a special setup for the beam delivery system has been developed. The effects of variations of nozzle thickness, diameter, taper angles, and restrictor shapes are simulated and some results are compared with the experimental results. It is fecund that the fluid ejection through the thinner and high tapered nozzle is more steady, fast, and robust and the tapered restrictor shows more satisfying refill than the zero taper one.

  • PDF

The Effect of Atrium on Energy Conservation and Environmental Control of a Building (아트리움의 에너지 절약(節約)과 환경조절기능(環境調節機能)에 관한 연구(硏究))

  • Lee, Eon-Gu;Lee, Hyeon-Ho
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.5-11
    • /
    • 1993
  • The study, considering the fact that most of the recently built atrium buildings do not fulfill their capacity of energy conservation and environmental control, aims to develop design strategies for architects in designing atrium buildings in terms of energy/environment standpoint. The research includes case studies of existing atrium buildings, quantatative analysis of energy performance for atrium buildings and systematic investigation of various aspects of atrium regarding its function of thermal, luminous and acoustical control of a building. The result of the study may contribute to the considerable reduction of energy consumption as well as to improvement of overall building environment.

  • PDF

Study on The Development of Basic Simulation Network for Operational Transient Analysis of The CANDU Power Plant

  • Park, Jong-Woon;Lim, Jae-cheon;Suh, Jae-seung;Chung, Ji-bum;Kim, Sung-Bae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.423-428
    • /
    • 1995
  • Simulation models have been developed to predict the overall behavior of the CANDU plant systems during normal operational transients. For real time simulation purpose, simplified thermal hydraulic models are applied with appropriate system control logics, which include primary heat transport system solver with its component models and secondary side system models. The secondary side models are mainly used to provide boundary conditions for primary system calculation and to accomodate plant power control logics. Also, for the effective use of simulation package, hardware oriented basic simulation network has been established with appropriate graphic display system. Through validation with typical plant power maneuvering cases using proven plant performance analysis computer code, the present simulation package shows reasonable capability in the prediction of the dynamic behavior of plant variables during operational transients of CANDU plant, which means that this simulation tool can be utilized as a basic framework for full scope simulation network through further improvements.

  • PDF

LMR Core Flow Grouping Study

  • Kim, Y. G.;Kim, Y. I.;Kim, . Y. C.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.271-276
    • /
    • 1996
  • Coolant flow distribution to the assemblies and core coolant/component temperatures should be determined in LMR core steady state thermal-hydraulic performance analysis. Sodium flow is distributed to core assemblies with the overall goal of equalizing the peak cladding midwall temperatures for the peak temperature pin of each pin bundle, thus pin cladding damage accrual and pin reliability. The flow orificing analysis for conceptual design will be performed with Excel spreadsheet program ORFCE which was set up and tested, using the calibration factors based on available analyses data. For the verification of this program, flow orificing calculation for the MDP 840MWth core was performed. The calculational results are satisfactory compared to those of CRIEPI calculation.

  • PDF

PERFORMANCE NEEDS OF TOMORROW'S DRIVELINE LUBRICANTS

  • Hong, Hyun-Soo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.21-24
    • /
    • 2002
  • There is a trend with driveline lubricants toward improved thermal stability, vehicle component durability and fuel efficiency. These improvements can significantly reduce vehicle operating costs and improve customer satisfaction. Of these improvements, the fuel efficiency is getting a substantial attention due to recent focus on $CO_2$ emission control in Europe, Japan and $CAF{\'{E}}$ requirement in U.S.A. Lower viscosity axle oils and transmission fluids are currently being evaluated as potential solutions since these lubricants tend to reduce the churning losses and can improve the fuel efficiency. However, these lubricants should provide adequate gear and bearing protection, while increasing the overall efficiency of the driveline components. In this paper, the development of new fuel efficient axle was discussed with the focus on the effect of base oils, additives, and viscosity modifiers on the fuel efficiency of driveline components.

  • PDF

Numerical Investigation for Combustion Characteristics of Vacuum Residue in a Test Furnace

  • Sreedhara, S.;Huh, Kang-Y.;Park, Ho-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.121-127
    • /
    • 2006
  • It has become inevitable to search for alternative fuels due to severe energy crisis these days. Use of alternative fuels, which are typically of lower quality, tends to increase environmental pollution, including formation of nitrogen oxides (NOx). In this paper performance of vacuum residue has been investigated experimentally as well as numerically in typical operating conditions of a furnace. Heat release reaction is modeled as sequential steps of devolatilization, simplified gas phase reaction and char oxidation as that for pulverized coal. Thermal and fuel NOx are predicted by conditional estimation of elementary reaction rates and are compared against measured experimental data. On the overall reasonable agreement is achieved for spatial distributions of major species, temperature and NOx for all test cases.

  • PDF

Enhancement of Performance of Dye-Sensitized Solar Cell by Reducing the Interface Resistance (계면저항 감소를 통한 염료감응형 태양전지 성능 향상)

  • Kim, Hwi-Dong;Kim, Ki-Hoon;Ahn, Ji-Young;Kim, Soo-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.360-363
    • /
    • 2009
  • In order to improve the overall power conversion efficiency, it is very important to reduce the interface resistance of dye-sensitized solar cells (DSSCs). In this approach, tiny $TiO_2$ nanoparticles with the primary size of 10~20nm were synthesized and deposited between FTO glass and preformed $TiO_2$ layer by $TiOCl_2$ treatment, and also Pt catalysts were deposited on the counter electrode by both ion-sputter and thermal deposition to reduce the electrolyte-counter electrode interface resistance. The influence of these processes on the performace of DSSCs were discussed in terms of fill factor, short circuit current, and conversion efficiency.

  • PDF

Theoretical Analysis in an Automotive Engine Cooling System (자동차용 엔진 냉각시스템의 이론적 해석)

  • Youn, Jong-Gap;Song, Seung-Hoon;Won, Sung-Pil
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.213-219
    • /
    • 2000
  • In this work, it has been predicted the thermal performance of the engine cooling system in cases of stationary mode, constant speed mode, city-drive mode, and hill-climb mode by theoretical modeling of each component and numerical analysis. The modelling components are engine, radiator, heater, thermostat, water-pump, and cooling-fan. And also it has been developed the simulation program that can be used in case of design and system configuration changes. The comparison has not been made to verify the results of this work with experimental data, but the overall tendencies were agreed well with those of actual situation in four modes.

  • PDF