• Title/Summary/Keyword: Overall Modeling Method

Search Result 250, Processing Time 0.027 seconds

Modeling and Position-Sensorless Control of a Dual-Airgap Axial Flux Permanent Magnet Machine for Flywheel Energy Storage Systems

  • Nguyen, Trong Duy;Beng, Gilbert Foo Hock;Tseng, King-Jet;Vilathgamuwa, Don Mahinda;Zhang, Xinan
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.758-768
    • /
    • 2012
  • This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.

A Design of New Digital Adaptive Predistortion Linearizer Algorithm Based on DFP(Davidon-Fletcher-Powell) Method (DFP Method 기반의 새로운 적응형 디지털 전치 왜곡 선형화기 알고리즘 개발)

  • Jang, Jeong-Seok;Choi, Yong-Gyu;Suh, Kyoung-Whoan;Hong, Ui-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.312-319
    • /
    • 2011
  • In this paper, a new linearization algorithm for DPD(Digital PreDistorter) is suggested. This new algorithm uses DFP(Davidon-Fletcher-Powell) method. This algorithm is more accurate than that of the existing algorithms, and this method renew the best-fit value in every routine with out setting the initial value of step-size. In modeling power amplifier, the memory polynomial model which can model the memory effect of the power amplifier is used. And the overall structure of linearizer is based on an indirect learning architecture. In order to verify for performance of proposed algorithm, we compared with LMS(Least Mean-Squares), RLS(Recursive Least squares) algorithm.

An Efficient Method for Interactive Cloth Simulation (효율적인 대화형 천 시뮬레이션 기법)

  • Jeong Dae Hyun;Kim Ku Jin;Baek Nakhoon;Ryu Kwan Woo
    • The KIPS Transactions:PartA
    • /
    • v.12A no.4 s.94
    • /
    • pp.321-326
    • /
    • 2005
  • We present an interactive cloth simulation method based on the mass-spring model, which is the most widely used one in the field of cloth animation. We focus especially on the case where relatively strong forces are applied on relatively small number of mass-points. Through distributing the forces on some specific points to the overall mass-points, our method simulates the cloth in pseudo-real time. Given a deformed cloth, we start from resolving the super-elasticity effect using Provot's dynamic inverse method [9]. In the next stage, we adjust the angles between neighboring mass-points, to finally remove the unexpected zigzags due to the previous super-elasticity resolving stage.

Performance Enhancement of Motion Control Systems Through Friction Identification and Compensation (마찰력 식별과 보상을 통한 운동제어 시스템의 성능 개선)

  • Lee, Ho Seong;Jung, Sowon;Ryu, Seonghyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2020
  • This paper proposes a method for measuring friction forces and creating a friction model for a rotary motion control system as well as an autonomous vehicle testbed. The friction forces versus the velocity were measured, and the viscous friction, Coulomb friction, and stiction were identified. With a nominal PID (proportional-integral-derivative) controller, we observed the adverse effects due to friction, such as excessive steady-state errors, oscillations, and limit-cycles. By adding an adequate friction model as part of the augmented nonlinear dynamics of a plant, we were able to conduct a simulation study of a motion control system that well matched experimental results. We have observed that the implementation of a model-based friction compensator improves the overall performance of both motion control systems, i.e., the rotary motion control system and the Altino testbed for autonomous vehicle development. By utilizing a better simulation tool with an embedded friction model, we expect that the overall development time and cost can be reduced.

Perceived Service Quality among Outpatients Visiting Hospitals and Clinics and Their Willingness to Re-utilize the Same Medical Institutions

  • Jung, Min-Soo;Lee, Keon-Hyung;Choi, Man-Kyu
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.3
    • /
    • pp.151-159
    • /
    • 2009
  • Objectives : This study was to determine how the perception and the satisfaction of outpatients who utilized clinics and hospitals are structurally related with their willingness to utilize the same institution in the future. Methods : Three hundred and ten responses (via convenient sampling) were collected from 5 hospitals and 20 clinics located in Seoul listed in the "Korea National Hospital Directory 2005". Service quality was utilized as the satisfaction measurement tool. For analysis, we used a structural equation modeling method. Results : The determining factors for general satisfaction with medical services are as follows: medical staff, reasonability of payment, comfort and accessibility. Such results may involve increased competition in the medical market and increased demands for quality medical services, which drive the patients to visit hospitals on their own on the basis of changed determining factors for satisfaction. Conclusions : The structural equation model showed that the satisfaction of outpatients with the quality of medical services is influenced by a few sub-dimensional satisfaction factors. Among these sub-dimensional satisfaction factors, the satisfaction with medical staff and payment were determined to exert a significant effect on overall satisfaction with the quality of medical services. The structural relationship in which overall satisfaction perceived by patients significantly influences their willingness to use the same institution in the future was also verified.

A Study on the Probabilistic Vulnerability Assessment of COTS O/S based I&C System (상용 OS기반 제어시스템 확률론적 취약점 평가 방안 연구)

  • Euom, Ieck-Chae
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.35-44
    • /
    • 2019
  • The purpose of this study is to find out quantitative vulnerability assessment about COTS(Commercial Off The Shelf) O/S based I&C System. This paper analyzed vulnerability's lifecycle and it's impact. this paper is to develop a quantitative assessment of overall cyber security risks and vulnerabilities I&C System by studying the vulnerability analysis and prediction method. The probabilistic vulnerability assessment method proposed in this study suggests a modeling method that enables setting priority of patches, threshold setting of vulnerable size, and attack path in a commercial OS-based measurement control system that is difficult to patch an immediate vulnerability.

Computational Predictions of Pile Downdrag (부마찰력의 계산적 예측방법)

  • Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.115-123
    • /
    • 1989
  • A computer program evaluating the pile downdrag is developed using the conventional elastic solid method. Modification of the conventional method has been performed by introducing the concept of critical relative displacement. A simple transfer function method which employes the critical relative displacement as a pile-soil slip criterion and calculates downdrag by Mohr-Coulomb equation, has also been developed. The results of three methods are all found to be in good agreement with field observations. When they are applied to a centrifuge modeling problem of pile downdrag to predict its result, however, diverse answers are obtained. Overall, the simple transfer function method developed in this study seems to be the most effective in the evaluation of pile downdrag, considering the quality of its result and its efficiency in computation.

  • PDF

A Study on the Customer-Oriented Design Using Desirability Function and Taguchi Method (호감도 함수와 다구찌 법을 이용한 고객지향설계에 관한 연구)

  • Jae Hun Jo;Ji Ho Lee;Jong Pil Park;Yoon Eui Nahm
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.99-108
    • /
    • 2022
  • Today, as technology advances and market competition for products intensifies, the product design to improve customer satisfaction by accurately identifying customer needs is emerging as a very important issue for company. Accordingly, the customer-oriented or customer-centered design that maximizes customer satisfaction by grasping and analyzing customer requirements is in the spotlight as an important design theory. In this study, the customer-oriented design is defined as finding the optimal value of design variable with the maximum overall customer satisfaction while minimizing the difference in individual customer satisfaction responded to various customers from multiple product quality characteristics from the perspective of robust design. Therefore, this study presents a new method for modeling the customer preference structure as the different sets of desirability functions for multiple quality characteristics and proposes a new customer-oriented design approach by applying the desirability functions to Taguchi's robust design process to deal with multi-characteristic design problem. Finally, the proposed method is illustrated with the Kansei engineering design problem of wine glass.

The smooth topology optimization for bi-dimensional functionally graded structures using level set-based radial basis functions

  • Wonsik Jung;Thanh T. Banh;Nam G. Luu;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.569-585
    • /
    • 2023
  • This paper proposes an efficient approach for the structural topology optimization of bi-directional functionally graded structures by incorporating popular radial basis functions (RBFs) into an implicit level set (ILS) method. Compared to traditional element density-based methods, a level set (LS) description of material boundaries produces a smoother boundary description of the design. The paper develops RBF implicit modeling with multiquadric (MQ) splines, thin-plate spline (TPS), exponential spline (ES), and Gaussians (GS) to define the ILS function with high accuracy and smoothness. The optimization problem is formulated by considering RBF-based nodal densities as design variables and minimizing the compliance objective function. A LS-RBF optimization method is proposed to transform a Hamilton-Jacobi partial differential equation (PDE) into a system of coupled non-linear ordinary differential equations (ODEs) over the entire design domain using a collocation formulation of the method of lines design variables. The paper presents detailed mathematical expressions for BiDFG beams topology optimization with two different material models: continuum functionally graded (CFG) and mechanical functionally graded (MFG). Several numerical examples are presented to verify the method's efficiency, reliability, and success in accuracy, convergence speed, and insensitivity to initial designs in the topology optimization of two-dimensional (2D) structures. Overall, the paper presents a novel and efficient approach to topology optimization that can handle bi-directional functionally graded structures with complex geometries.

Nonlinear Flexural Modeling of Prestressed Concrete Beams with Composite Materials (복합소재 프리스트레스트 콘크리트보의 비선형 휨 모델링)

  • ;;Naaman, Antoine
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.269-280
    • /
    • 1998
  • Recently, application of composite materials such as fiber reinforced concretes(FRCs) and fiber reinforced plastics(FRPs) in conjunction with conventional structural components has become one of the main research areas. A proper use of advanced composite materials requires understanding their resistance mechanism and failure mode when they are applied to structures or their components. Particular considerations are given in this research to develop an analytical model which can predict the nonlinear flexural responses of bonded and unbonded prestressed concrete beams possibly having layers of different cementitious composite matrices in a section and/or FRP tendons. The block concept is used, which can be regarded as an intermediate modeling method between the couple method with one block and the layered method with multiply sliced layers in a section. In order to find a particular deflection point of a beam under load, solutions to the 2N-variables are found numerically by using approximate N-force equilibrium equations and N-moment equilibirum equations. The model is shown to successfully predict the flexual behavior of variously reinforced bonded and unbonded prestressed concrete beams. The model is also successful in simulating a gradually increasing load after sudden drop inload resistance due to fracture of one or more FRP tendons. This feature is useful in tracing the overall load-deflection response of a beam prestressed with brittle FRP tendons.