• Title/Summary/Keyword: Over-fitting

Search Result 347, Processing Time 0.025 seconds

Application of the Gradient-Based 3D Patch Extraction Method to Terrain and Man-made Objects for Construction of 3D CyberCity (3차원 사이버도시구축을 위한 그래디언트기반 3차원 평면추출기법의 지형 및 인공지물지역에의 적용에 관한 연구)

  • Seo, Su-Young
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.227-229
    • /
    • 2010
  • This study presents an application of the 3D patch extraction method which is based on gradient-driven properties to obtain 3D planar patches over the terrain and man-made objects from lidar data. The method which was exploited in this study is composed of a sequence of processes: segmentation by slope, initiation of triggering patches by mode selection, and expansion of the triggering patches. Since urban areas contain many planar regions over the terrain surface, application of the method has been experimented to extract 3D planar patches not only from non-terrain objects but also from the terrain. The experimental result shows that the method is efficient to acquire 3D planar patches.

  • PDF

Stochastic procedures for extreme wave induced responses in flexible ships

  • Jensen, Jorgen Juncher;Andersen, Ingrid Marie Vincent;Seng, Sopheak
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1148-1159
    • /
    • 2014
  • Different procedures for estimation of the extreme global wave hydroelastic responses in ships are discussed. Firstly, stochastic procedures for application in detailed numerical studies (CFD) are outlined. The use of the First Order Reliability Method (FORM) to generate critical wave episodes of short duration, less than 1 minute, with prescribed probability content is discussed for use in extreme response predictions including hydroelastic behaviour and slamming load events. The possibility of combining FORM results with Monte Carlo simulations is discussed for faster but still very accurate estimation of extreme responses. Secondly, stochastic procedures using measured time series of responses as input are considered. The Peak-over-Threshold procedure and the Weibull fitting are applied and discussed for the extreme value predictions including possible corrections for clustering effects.

Distributed fiber-optic sensor network for the over temperature protection relay of electric power systems (전력설비 보호를 위한 온도계전기용 광섬유 분배센서)

  • Park, Hyoung-Jun;Lee, June-Ho;Song, Min-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.86-90
    • /
    • 2006
  • We prosed a distributed fiber-optic sensor system with 10 fiber Bragg gratings, for over temperature protection relay in power systems. We applied Gaussian line-fitting algorithm to compensate the distortion effects in the wavelength-scanned Farby-Perot filter demodulation scheme. Compared with the highest-peak-detection method, the proposed algorithm was proved to minimize the random errors of distorted PD profiles. From experimental results, the overall measurement error was within 1 % compared with the reference thermocouple and the linearity error was less than 0.37 %.

  • PDF

A Model-Fitting Approach of External Force on Electric Pole Using Generalized Additive Model (일반화 가법 모형을 이용한 전주 외력 모델링)

  • Park, Chul Young;Shin, Chang Sun;Park, Myung Hye;Lee, Seung Bae;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.11
    • /
    • pp.445-452
    • /
    • 2017
  • Electric pole is a supporting beam used for power transmission/distribution which accelerometer are used for measuring a external force. The meteorological condition has various effects on the external forces of electric pole. One of them is the elasticity change of the aerial wire. It is very important to perform modelling. The acceleration sensor is converted into a pitch and a roll angle. The meteorological condition has a high correlation between variables, and selecting significant explanatory variables for modeling may result in the problem of over-fitting. We constructed high deviance explained model considering multicollinearity using the Generalized Additive Model which is one of the machine learning methods. As a result of the Variation Inflation Factor Test, we selected and fitted the significant variable as temperature, precipitation, wind speed, wind direction, air pressure, dewpoint, hours of daylight and cloud cover. It was noted that the Hours of daylight, cloud cover and air pressure has high explained value in explonatory variable. The average coefficient of determination (R-Squared) of the Generalized Additive Model was 0.69. The constructed model can help to predict the influence on the external forces of electric pole, and contribute to the purpose of securing safety on utility pole.

Modeling Age-specific Cancer Incidences Using Logistic Growth Equations: Implications for Data Collection

  • Shen, Xing-Rong;Feng, Rui;Chai, Jing;Cheng, Jing;Wang, De-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9731-9737
    • /
    • 2014
  • Large scale secular registry or surveillance systems have been accumulating vast data that allow mathematical modeling of cancer incidence and mortality rates. Most contemporary models in this regard use time series and APC (age-period-cohort) methods and focus primarily on predicting or analyzing cancer epidemiology with little attention being paid to implications for designing cancer registry, surveillance or evaluation initiatives. This research models age-specific cancer incidence rates using logistic growth equations and explores their performance under different scenarios of data completeness in the hope of deriving clues for reshaping relevant data collection. The study used China Cancer Registry Report 2012 as the data source. It employed 3-parameter logistic growth equations and modeled the age-specific incidence rates of all and the top 10 cancers presented in the registry report. The study performed 3 types of modeling, namely full age-span by fitting, multiple 5-year-segment fitting and single-segment fitting. Measurement of model performance adopted adjusted goodness of fit that combines sum of squred residuals and relative errors. Both model simulation and performance evalation utilized self-developed algorithms programed using C# languade and MS Visual Studio 2008. For models built upon full age-span data, predicted age-specific cancer incidence rates fitted very well with observed values for most (except cervical and breast) cancers with estimated goodness of fit (Rs) being over 0.96. When a given cancer is concerned, the R valuae of the logistic growth model derived using observed data from urban residents was greater than or at least equal to that of the same model built on data from rural people. For models based on multiple-5-year-segment data, the Rs remained fairly high (over 0.89) until 3-fourths of the data segments were excluded. For models using a fixed length single-segment of observed data, the older the age covered by the corresponding data segment, the higher the resulting Rs. Logistic growth models describe age-specific incidence rates perfectly for most cancers and may be used to inform data collection for purposes of monitoring and analyzing cancer epidemic. Helped by appropriate logistic growth equations, the work vomume of contemporary data collection, e.g., cancer registry and surveilance systems, may be reduced substantially.

Refractive Power Changes after Removal of Contact Lenses (콘택트렌즈를 임시 제거한 상태에서의 착용 조건에 따른 굴절력 변화)

  • Cho, Yun-Kyung;Kim, Soo-Woon;Yu, Dong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.3
    • /
    • pp.279-289
    • /
    • 2013
  • Purpose: To evaluate the changes of refractive power when worn soft contact lenses were temporarily removed. Methods: 91 soft contact lens wearers (15 males and 76 females; total 182 eyes) from 17 to 39 years of age (average: $24{\pm}4.8$ years) were participated. Objective and subjective refraction, and corneal radius were measured at 0, 30, 60 and 90 min after lens removal. The changes in refractive power were evaluated between measurements over time. The other parameters such as types of lenses, fitting and wearing conditions were also assessed. Results: Objective refraction, subjective refraction and corneal radius were significantly changed according to measured time (p<0.0001). A moderate myopic shifts was observed at the beginning (30 min after lens removal) and a slight myopic shift at the late of measurement (60 min to 90 min after lens removal). There are no significant differences between lens types, fitting states, wearing time, wearing days and sleeping time in the previous day. However, there was significant interaction in changes for corneal radius between measuring time and lens type (p=0.017), fitting state (p=0.019), and sleeping time prior to the test (p=0.010). Conclusions: Time to reach refractive and corneal radius stability after contact lens removal revealed at least more than 60 min, regardless of types of lenses, fitting and wearing conditions. Therefore, refraction for correction should be performed after waiting for more than that time as possible.

Learning Similarity with Probabilistic Latent Semantic Analysis for Image Retrieval

  • Li, Xiong;Lv, Qi;Huang, Wenting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1424-1440
    • /
    • 2015
  • It is a challenging problem to search the intended images from a large number of candidates. Content based image retrieval (CBIR) is the most promising way to tackle this problem, where the most important topic is to measure the similarity of images so as to cover the variance of shape, color, pose, illumination etc. While previous works made significant progresses, their adaption ability to dataset is not fully explored. In this paper, we propose a similarity learning method on the basis of probabilistic generative model, i.e., probabilistic latent semantic analysis (PLSA). It first derives Fisher kernel, a function over the parameters and variables, based on PLSA. Then, the parameters are determined through simultaneously maximizing the log likelihood function of PLSA and the retrieval performance over the training dataset. The main advantages of this work are twofold: (1) deriving similarity measure based on PLSA which fully exploits the data distribution and Bayes inference; (2) learning model parameters by maximizing the fitting of model to data and the retrieval performance simultaneously. The proposed method (PLSA-FK) is empirically evaluated over three datasets, and the results exhibit promising performance.

Modeling the Natural Occurrence of Selected Dipterocarp Genera in Sarawak, Borneo

  • Teo, Stephen;Phua, Mui-How
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.3
    • /
    • pp.170-178
    • /
    • 2012
  • Dipterocarps or Dipterocarpaceae is a commercially important timber producing and dominant keystone tree family in the rain forests of Borneo. Borneo's landscape is changing at an unprecedented rate in recent years which affects this important biodiversity. This paper attempts to model the natural occurrence (distribution including those areas with natural forests before being converted to other land uses as opposed to current distribution) of dipterocarp species in Sarawak which is important for forest biodiversity conservation and management. Local modeling method of Inverse Distance Weighting was compared with commonly used statistical method (Binary Logistic Regression) to build the best natural distribution models for three genera (12 species) of dipterocarps. Database of species occurrence data and pseudoabsence data were constructed and divided into two halves for model building and validation. For logistic regression modeling, climatic, topographical and edaphic parameters were used. Proxy variables were used to represent the parameters which were highly (p>0.75) correlated to avoid over-fitting. The results show that Inverse Distance Weighting produced the best and consistent prediction with an average accuracy of over 80%. This study demonstrates that local interpolation method can be used for the modeling of natural distribution of dipterocarp species. The Inverse Distance Weighted was proven a better method and the possible reasons are discussed.

Classroom Roll-Call System Based on ResNet Networks

  • Zhu, Jinlong;Yu, Fanhua;Liu, Guangjie;Sun, Mingyu;Zhao, Dong;Geng, Qingtian;Su, Jinbo
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1145-1157
    • /
    • 2020
  • A convolution neural networks (CNNs) has demonstrated outstanding performance compared to other algorithms in the field of face recognition. Regarding the over-fitting problem of CNN, researchers have proposed a residual network to ease the training for recognition accuracy improvement. In this study, a novel face recognition model based on game theory for call-over in the classroom was proposed. In the proposed scheme, an image with multiple faces was used as input, and the residual network identified each face with a confidence score to form a list of student identities. Face tracking of the same identity or low confidence were determined to be the optimisation objective, with the game participants set formed from the student identity list. Game theory optimises the authentication strategy according to the confidence value and identity set to improve recognition accuracy. We observed that there exists an optimal mapping relation between face and identity to avoid multiple faces associated with one identity in the proposed scheme and that the proposed game-based scheme can reduce the error rate, as compared to the existing schemes with deeper neural network.

The Influence of Assay Error Weight on Gentamicin Pharmacokinetics Using the Bayesian and Nonlinear Least Square Regression Analysis in Appendicitis Patients

  • Jin, Pil-Burm
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.598-603
    • /
    • 2005
  • The purpose of this study was to determine the influence of weight with gentamicin assay error on the Bayesian and nonlinear least squares regression analysis in 12 Korean appen dicitis patients. Gentamicin was administered intravenously over 0.5 h every 8 h. Three specimens were collected at 48 h after the first dose from all patients at the following times, just before regularly scheduled infusion, at 0.5 h and 2 h after the end of 0.5 h infusion. Serum gentamicin levels were analyzed by fluorescence polarization immunoassay technique with TDxFLx. The standard deviation (SD) of the assay over its working range had been determined at the serum gentamicin concentrations of 0, 2, 4, 8, 12, and 16 ${\mu}g$/mL in quadruplicate. The polynominal equation of gentamicin assay error was found to be SD (${\mu}g$/mL) = 0.0246-(0.0495C)+ (0.00203C$^2$). There were differences in the influence of weight with gentamicin assay error on pharmacokinetic parameters of gentamicin using the nonlinear least squares regression analysis but there were no differences on the Bayesian analysis. This polynominal equation can be used to improve the precision of fitting of pharmacokinetic models to optimize the process of model simulation both for population and for individualized pharmacokinetic models. The result would be improved dosage regimens and better, safer care of patients receiving gentamicin.