• Title/Summary/Keyword: Over-Segmentation

Search Result 341, Processing Time 0.024 seconds

Intelligent interpolation methods for a full-scale SPOT-DEM

  • Kim, Seung-Bum;Park, Won-Kyu;Kim, Tag-Gon
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.171-176
    • /
    • 1999
  • Intelligent schemes for an automatic generation of DEM (digital elevation model) are implemented. The need for these post-processing schemes is that interpolation alone produces severe blunders, however sophisticated it is. These blunders occur most seriously along the boundaries of a scene, over rivers, and along the coast. Even a state-of-the-art commercial software retains such blunders. The intelligent schemes implemented are (1) center-of-gravity and empty-center-index which quantify how evenly distributed interpolants are within in interpolation radius. (2) a segmentation scheme to discern whether or not an empty segment in stereo-match results should be interpolated, and (3) a segmentation scheme for removing noise-like features, with these methods, in the final DEM, identical coastline and river region to those in the original SPOT scenes are achieved. The DEM exhibits substantial improvements over the products of an existing commercial software.

  • PDF

A MULTIPHASE LEVEL SET FRAMEWORK FOR IMAGE SEGMENTATION USING GLOBAL AND LOCAL IMAGE FITTING ENERGY

  • TERBISH, DULTUYA;ADIYA, ENKHBOLOR;KANG, MYUNGJOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.2
    • /
    • pp.63-73
    • /
    • 2017
  • Segmenting the image into multiple regions is at the core of image processing. Many segmentation formulations of an images with multiple regions have been suggested over the years. We consider segmentation algorithm based on the multi-phase level set method in this work. Proposed method gives the best result upon other methods found in the references. Moreover it can segment images with intensity inhomogeneity and have multiple junction. We extend our method (GLIF) in [T. Dultuya, and M. Kang, Segmentation with shape prior using global and local image fitting energy, J.KSIAM Vol.18, No.3, 225-244, 2014.] using a multiphase level set formulation to segment images with multiple regions and junction. We test our method on different images and compare the method to other existing methods.

A methodology for spatial distribution of grain and voids in self compacting concrete using digital image processing methods

  • Onal, Okan;Ozden, Gurkan;Felekoglu, Burak
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.61-74
    • /
    • 2008
  • Digital image processing algorithms for the analysis and characterization of grains and voids in cemented materials were developed using toolbox functions of a mathematical software package. Utilization of grayscale, color and watershed segmentation algorithms and their performances were demonstrated on artificially prepared self-compacting concrete (SCC) samples. It has been found that color segmentation was more advantageous over the gray scale segmentation for the detection of voids whereas the latter method provided satisfying results for the aggregate grains due to the sharp contrast between their colors and the cohesive matrix. The watershed segmentation method, on the other hand, appeared to be very efficient while separating touching objects in digital images.

Multi-Path Feature Fusion Module for Semantic Segmentation (다중 경로 특징점 융합 기반의 의미론적 영상 분할 기법)

  • Park, Sangyong;Heo, Yong Seok
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • In this paper, we present a new architecture for semantic segmentation. Semantic segmentation aims at a pixel-wise classification which is important to fully understand images. Previous semantic segmentation networks use features of multi-layers in the encoder to predict final results. However, they do not contain various receptive fields in the multi-layers features, which easily lead to inaccurate results for boundaries between different classes and small objects. To solve this problem, we propose a multi-path feature fusion module that allows for features of each layers to contain various receptive fields by use of a set of dilated convolutions with different dilatation rates. Various experiments demonstrate that our method outperforms previous methods in terms of mean intersection over unit (mIoU).

Color Image Segmentation Based on Edge Salience Map and Region Merging (경계 중요도 맵 및 영역 병합에 기반한 칼라 영상 분할)

  • Kim, Sung-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.105-113
    • /
    • 2007
  • In this paper, an image segmentation method which is based on edge salience map and region merging is presented. The edge salience map is calculated by combining a texture edge map with a color edge map. The texture edge map is computed over multiple spatial orientations and frequencies by using Gabor filter. A color edge is computed over the H component of the HSI color model. Then the Watershed transformation technique is applied to the edge salience map to and homogeneous regions where the dissimilarity of color and texture distribution is relatively low. The Watershed transformation tends to over-segment images. To merge the over-segmented regions, first of all, morphological operation is applied to the edge salience map to enhance a contrast of it and also to find mark regions. Then the region characteristics, a Gabor texture vector and a mean color, in the segmented regions is defined and regions that have the similar characteristics, are merged. Experimental results have demonstrated the superiority in segmentation results for various images.

  • PDF

Development of Deep Learning Based Ensemble Land Cover Segmentation Algorithm Using Drone Aerial Images (드론 항공영상을 이용한 딥러닝 기반 앙상블 토지 피복 분할 알고리즘 개발)

  • Hae-Gwang Park;Seung-Ki Baek;Seung Hyun Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.71-80
    • /
    • 2024
  • In this study, a proposed ensemble learning technique aims to enhance the semantic segmentation performance of images captured by Unmanned Aerial Vehicles (UAVs). With the increasing use of UAVs in fields such as urban planning, there has been active development of techniques utilizing deep learning segmentation methods for land cover segmentation. The study suggests a method that utilizes prominent segmentation models, namely U-Net, DeepLabV3, and Fully Convolutional Network (FCN), to improve segmentation prediction performance. The proposed approach integrates training loss, validation accuracy, and class score of the three segmentation models to enhance overall prediction performance. The method was applied and evaluated on a land cover segmentation problem involving seven classes: buildings,roads, parking lots, fields, trees, empty spaces, and areas with unspecified labels, using images captured by UAVs. The performance of the ensemble model was evaluated by mean Intersection over Union (mIoU), and the results of comparing the proposed ensemble model with the three existing segmentation methods showed that mIoU performance was improved. Consequently, the study confirms that the proposed technique can enhance the performance of semantic segmentation models.

Segmentation of Multispectral Brain MRI Based on Histogram (히스토그램에 기반한 다중스펙트럼 뇌 자기공명영상의 분할)

  • 윤옥경;김동휘
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.4
    • /
    • pp.46-54
    • /
    • 2003
  • In this paper, we propose segmentation algorithm for MR brain images using the histogram of T1-weighted, T2-weighted and PD images. Segmentation algorithm is composed of 3 steps. The first step involves the extraction of cerebrum images by ram a cerebrum mask over three input images. In the second step, peak ranges are determined from the histogram of the cerebrum image. In the final step, cerebrum images are segmented using coarse to fine clustering technique. We compare the segmentation result and processing time according to peak ranges. Also compare with the other segmentation methods. The proposed algorithm achieved better segmentation results than the other methods.

  • PDF

Fuzzy-based Segmentation Algorithm for Brain Images (퍼지기반의 두뇌영상 영역분할 알고리듬)

  • Lee, Hyo-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.102-107
    • /
    • 2009
  • As technology gets developed, medical equipments are also modernized and leading-edge systems, such as PACS become popular. Many scientists noticed importance of medical image processing technology. Technique of region segmentation is the first step of digital medical image processing. Segmentation technique helps doctors to find out abnormal symptoms early, such as tumors, edema, and necrotic tissue, and helps to diagnoses correctly. Segmentation of white matter, gray matter and CSF of a brain image is very crucial part. However, the segmentation is not easy due to ambiguous boundaries and inhomogeneous physical characteristics. The rate of incorrect segmentation is high because of these difficulties. Fuzzy-based segmentation algorithms are robust to even ambiguous boundaries. In this paper a modified Fuzzy-based segmentation algorithm is proposed to handle the noise of MR scanners. A proposed algorithm requires minimal computations of mean and variance of neighbor pixels to adjust a new neighbor list. With the addition of minimal compuation, the modified FCM(mFCM) lowers the rate of incorrect clustering below 30% approximately compared the traditional FCM.

A Method for Tree Image Segmentation Combined Adaptive Mean Shifting with Image Abstraction

  • Yang, Ting-ting;Zhou, Su-yin;Xu, Ai-jun;Yin, Jian-xin
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1424-1436
    • /
    • 2020
  • Although huge progress has been made in current image segmentation work, there are still no efficient segmentation strategies for tree image which is taken from natural environment and contains complex background. To improve those problems, we propose a method for tree image segmentation combining adaptive mean shifting with image abstraction. Our approach perform better than others because it focuses mainly on the background of image and characteristics of the tree itself. First, we abstract the original tree image using bilateral filtering and image pyramid from multiple perspectives, which can reduce the influence of the background and tree canopy gaps on clustering. Spatial location and gray scale features are obtained by step detection and the insertion rule method, respectively. Bandwidths calculated by spatial location and gray scale features are then used to determine the size of the Gaussian kernel function and in the mean shift clustering. Furthermore, the flood fill method is employed to fill the results of clustering and highlight the region of interest. To prove the effectiveness of tree image abstractions on image clustering, we compared different abstraction levels and achieved the optimal clustering results. For our algorithm, the average segmentation accuracy (SA), over-segmentation rate (OR), and under-segmentation rate (UR) of the crown are 91.21%, 3.54%, and 9.85%, respectively. The average values of the trunk are 92.78%, 8.16%, and 7.93%, respectively. Comparing the results of our method experimentally with other popular tree image segmentation methods, our segmentation method get rid of human interaction and shows higher SA. Meanwhile, this work shows a promising application prospect on visual reconstruction and factors measurement of tree.

A Method for the Increasing Efficiency of the Watershed Based Image Segmentation using Haar Wavelet Transform (Haar 웨이블릿 변환을 사용한 Watershed 기반 영상 분할의 효율성 증대를 위한 기법)

  • 김종배;김항준
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.2
    • /
    • pp.1-10
    • /
    • 2003
  • This paper presents an efficient method for image segmentation based on a multiresolution application of a wavelet transform and watershed segmentation algorithm. The procedure toward complete segmentation consists of four steps: pyramid representation, image segmentation, region merging and region projection. First, pyramid representation creates multiresolution images using a wavelet transform. Second, image segmentation segments the lowest-resolution image of the pyramid using a watershed segmentation algorithm. Third, region merging merges the segmented regions using the third-order moment values of the wavelet coefficients. Finally, the segmented low-resolution image with label is projected into a full-resolution image (original image) by inverse wavelet transform. Experimental results of the presented method can be applied to the segmentation of noise or degraded images as well as reduce over-segmentation.