• Title/Summary/Keyword: Over heat

Search Result 2,374, Processing Time 0.048 seconds

USING REMOTELY SENSED DATA TO ESTIMATE THE SURFACE HEAT FLUXES OVER TAIWAN'S CHAIYI PLAIN

  • Chang, Tzu-Yin;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.422-425
    • /
    • 2007
  • Traditionally, surface energy fluxes are obtained by model simulations or empirical equations with auxiliary meteorological data. These methods may not effectively represent the surface heat fluxes in a regional scale due to scene variability. On the other hand, remote sensing has the advantage to acquire data of a large area in an instantaneous view. The remotely sensed data can be further used to retrieve surface radiation and heat fluxes over a large area. In this study, the airborne and satellite images in conjunction with meteorological data and ground observations were used to estimate the surface heat fluxes over Taiwan's Chaiyi Plain. The results indicate that surface heat fluxes can be properly determined from both airborne and satellite images. The correlation coefficient of surface heat fluxes with in situ corresponding observations is over 0.60. We also observe that the remotely sensed data can efficiently provide a long term monitoring of surface heat fluxes over Taiwan's Chaiyi Plain.

  • PDF

USING MODIS DATA TO ESTIMATE THE SURFACE HEAT FLUXES OVER TAIWAN'S CHIAYI PLAIN

  • Ho, Han-Chieh;Liou, Yuei-An;Wang, Chuan-Sheng
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.317-319
    • /
    • 2008
  • Traditionally, it is measured by using basin or empirical formula with meteorology data, while it does not represent the evaportransporation over a regional area. With the advent of improved remote sensing technology, it becomes feasible to assess the ET over a regional scale. Firstly, the IMAGINE ATCOR atmospheric module is used to preprocess for the MODIS imagery. Then MODIS satellite images which have been corrected by radiation and geometry in conjunction with the in-situ surface meteorological measurement are used to estimate the surface heat fluxes such as soil heat flux, sensible heat flux, and latent heat flux. In addition, the correlation coefficient between the derived latent heat and the in-situ measurement is found to be over 0.76. In the future, we will continue to monitor the surface heat fluxes of paddy rice field in Chiayi area.

  • PDF

Influence of Boreal Summer Intraseasonal Oscillation on the 2016 Heat Wave over Korea (한반도 2016년 폭염에 여름철 계절안진동이 미친 영향)

  • Lee, June-Yi;Kim, Hae-Jeong;Jeong, Yoo-Rim
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.627-637
    • /
    • 2019
  • Severe and long-lasting heat waves over Korea and many regions in the Northern Hemisphere (NH) during the 2016 summer, have been attributed to global warming and atmospheric teleconnection coupled with tropical convective activities. Yet, what controls subseasonsal time scale of heat wave has not been well addressed. Here we show a critical role of two dominant boreal summer intraseasonal oscillation (BSISO) modes, denominated as BSISO1 and BSISO2, on modulating temporal structure of heat waves in the midst of similar climate background. The 2016 summer was characterized by La Nina development following decay of strong 2015/2016 El Nino. The NH circumglobal teleconnection pattern (CGT) and associated high temperature anomalies and heat waves were largely driven by convective activity over northwest India and Pakistan during summer associated with La Nina development. However, the heat wave event in Korea from late July to late August was accompanied by the phase 7~8 of 30~60-day BSISO1 characterized by convective activity over the South China Sea and Western North Pacific and anticyclonic circulation (AC) anomaly over East Asia. Although the 2010 summer had very similar climate anomalies as the 2016 summer with La Nina development and CGT, short-lasting but frequent heat waves were occurred during August associated with the phase 1~2 of 10~30-day BSISO2 characterized by convective activity over the Philippine and South China Sea and AC anomaly over East Asia. This study has an implication on importance of BSISO for better understanding mechanism and temporal structure of heat waves in Korea.

On the Warming Effects due to Artificial Constructions in a Large Housing Complex (대규모 주택단지내의 인공구조물에 의한 승온화효과에 관한 연구)

  • 김해동;이송옥;구현숙
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.705-713
    • /
    • 2003
  • In mid-August 2002, under clear summer pressure patterns, we carried out an intensive meteorological observation to examine the warming effects due to artificial constructions in a large housing complex. We set an automatic weather system(AWS) at two places in a bare soil surface within a limited development district and an asphalt surface within a large apartment residence area, respectively. As a result of observation, it became clear that the difference of the surface air(ground) temperature between the bare soil surface and its peripheral asphalt area reached about 4$^{\circ}C$(13$^{\circ}C$) at the maximum from diurnal variation of surface temperatures on AWS data. Through the heat balance analysis using measurement data, it became clear that the thermal conditions at two places are dependent on the properties of surface material. The latent heat flux over the bare soil surface reached to about 300 W/㎡, which is more than a half of net radiation during the daytime. On the other hand, it was nearly zero over the asphalt surface. Hence, the sensible heat flux over the asphalt surface was far more than that of the bare soil surface. The sensible heat flux over the asphalt surface showed about 20∼30 W/㎡ during the night. It was released from asphalt surface which have far more heat capacity than that of bare soil surface.

Experimental Study on Naphthalene Heat Pipe Heat Exchanger for Middle-high Temperature Heat Recovery (중고온 범위 폐열회수용 나프탈렌 히트파이프 열교환기에 대한 실험적 연구)

  • Chung, Won-Bok;Park, Soo-Yong;Hwang, Seon-Hong
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.64-69
    • /
    • 2007
  • This study is to develop heat recovery system using high performance heat pipe heat exchanger for Middle-high temperature range industrial exhaust gas. The naphthalene is used as working fluid of heat pipe in this study. Single naphthalene heat pipe could transport over 2,000 watts with $0.05^{\circ}C/W$. The heat pipe heat exchanger consist of 50 naphthalene heat pipes recovered 62 kW when over $400^{\circ}C$ gas exhausted and the maximum recovered heat rate was 173 kW in this study.

  • PDF

SATELLITE-DERIVED SENSIBLE HEAT FLUX OVER THE OCEAN

  • .Kubota Masahisa;Ohnishi Keisuke;Iwasaki Shinsuke;Tomita Hiroyuki
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.30-33
    • /
    • 2005
  • Though sensible heat flux is one of heat flux components, it is generally considered that the importance is low compared with other components because of the small value. Actually sensible heat flux over the tropical ocean is extremely small, less than $100\;W/m^2$ .. However, it should be noted that sensible heat flux in boreal winter over the western boundary current regions is considerably large, about $100\;W/m^2$, and not neglected. In this study we carry out intercomparison of various global sensible heat flux data including not only satellite-derived data but also reanalysis data in order to clarify the characteristics of those data.

  • PDF

Observational Study on the Local Wind of the Dalbi-Valley Located at Ap-Mountain in Daegu (대구 앞산 달비골의 국지풍 특성에 관한 관측적 연구)

  • Koo, Hyun-Suk;Kwon, Byung-Hyuk;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.73-79
    • /
    • 2007
  • The purpose of this study is to clarify the effect of mountain-valley wind on heat island formed in urban area which is located around valley mouth. The meteorological observations were carried out over the Dalbi-valley under a clear summer pressure patterns, and some consideration were tried from the results. In order to make clear the climatological characteristics and air-mass modification process of the mountain-valley wind over the valley, the meteorological observations were done simultaneously at two points. The observational points were located at the breast and valley mouth parts, respectively. The results were as follows: First, it was found that the valley wind was observed through the daytime, and it was replaced by a mountain wind after sunset. Second, the heat budget is also investigated with observation data. The sensible heat flux over the breast of Dalbi-valley reached to about $200 W/m^2$ during daytime, which is a little more than one third of net radiation. On the other hand, the sensible heat flux represented negative values during nighttime. But the sensible heat flux over the valley mouth covered by asphalt showed plus value(about $20{\sim}30 W/m^2$) during the nighttime.

Experimental Investigation of R-22 Condensation in Tubes with Small Inner Diameter

  • Kim, Nae-Hyun;Cho, Jin-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.45-54
    • /
    • 1999
  • In this study, condensation heat transfer experiments were conducted in two small diameter (ø17.5, ø4.0) tubes. Comparison with the existing in-tube condensation heat transfer correlations indicated that these correlations over predict the present data. For example, Akers correlation over predicted the data up to 104 %. The condensation heat transfer coefficient of the ø4.0 I.D. tube was smaller than that of the ø7.5 I.D tube; at the mass velocity of 300 kg/$m^2$s, the difference was 12 %. The pressure drop data of the small diameter tubes were highly (two to six times) over predicted by the Lockhart-Martinelli correlation. Sub-cooled forced convection heat transfer test confirmed that Gnielinski's single phase heat transfer correlation predicted the data reasonably well.

  • PDF

Three-dimensional Numerical Prediction on the Evolution of Nocturnal Thermal High (Tropical Night) in a Basin

  • Choi, Hyo;Kim, Jeong-Woo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.57-81
    • /
    • 1997
  • Numerical prediction of nocturnal thermal high in summer of the 1995 near Taegu city located in a basin has been carried out by a non-hydrostatic numerical model over complex terrain through one-way double nesting technique in the Z following coordinate system. Under the prevailing westerly winds, vertical turbulent fluxes of momentum and heat over mountains for daytime hours are quite strong with a large magnitude of more than $120W/\textrm{m}^2$, but a small one of $5W/\textrm{m}^2$ at the surface of the basin. Convective boundary layer (CBL) is developed with a thickness of about 600m over the ground in the lee side of Mt. Hyungje, and extends to the edge of inland at the interface of land sea in the east. Sensible heat flux near the surface of the top of the mountain is $50W/\textrm{m}^2$, but its flux in the basin is almost zero. Convergence of sensible heat flux occurs from the ground surface toward the atmosphere in the lower layer, causing the layer over the mountain to be warmed up, but no convergance of the flux over the basin results from the significant mixing of air within the CBL. As horizontal transport of sensible heat flux from the top of the mountain toward over the basin results in the continuous accumulation of heat with time, enhancing air temperature at the surface of the basin, especially Taegu city to be higher than $39.3^{\circ}C$. Since latent heat fluxes are $270W/\textrm{m}^2$ near the top of the mountain and $300W/\textrm{m}^2$ along the slope of the mountain and the basin, evaporation of water vapor from the surface of the basin is much higher than one from the mountain and then, horizontal transport of latent heat flux is from the basin toward the mountain, showing relative humidity of 65 to 75% over the mountain to be much greater than 50% to 55% in the basin. At night, sensible heat fluxes have negative values of $-120W/\textrm{m}^2$ along the slope near the top of the mountain and $-50W/\textrm{m}^2$ at the surface of the basin, which indicate gain of heat from the lower atmosphere. Nighttime radiative cooling produces a shallow nocturnal surface inversion layer with a thickness of about 100m, which is much lower than common surface inversion layer, and lifts extremely heated air masses for daytime hours, namely, a warm pool of $34^{\circ}C$ to be isolated over the ground surface in the basin. As heat transfer from the warm pool in the lower atmosphere toward the ground of the basin occurs, the air near the surface of the basin does not much cool down, resulting in the persistence of high temperature at night, called nocturnal thermal high or tropical night. High relative humidity of 75% is found at the surface of the basin under the moderate wind, while slightly low relative humidity of 60% is along the eastern slope of the high mountain, due to adiabatic heating by the srong downslope wind. Air temperature near the surface of the basin with high moisture in the evening does not get lower than that during the day and the high temperature produces nocturnal warming situation.

  • PDF

Heat transfer with geometric shape of micro-fin tubes (I) - Condensing heat transfer - (마이크로핀 관의 기하학적 형상변화에 대한 열전달 특성 (I) - 응축 열전달 -)

  • Kwak, Kyung-Min;Jang, Jae-Sik;Bae, Chul-Ho;Jung, Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.774-788
    • /
    • 1999
  • To examine the enhancement mechanism of condensing heat transfer through microfin tube, the condensation experiments with refrigerant HCFC 22 are performed using 4 and 6 kinds of microfin tubes with outer diameter of 9.52mm and 7.0mm, respectively. Used microfin tubes have different shape and number of fins with each other The main heat transfer enhancement mechanism is known to be the enlargement of heat transfer area and turbulence promotion. Together with these main factors, we can find other enhancement factors by the experimental data, which are the overflow of the refrigerant over the microfin and microfin arrangement. The overflow of the refrigerant over the microfin can be analyzed by the geometric shape of the microfin. Microfin tubes having a shape which can give much overflow over the microfin show large condensing heat transfer coefficients. The effect of microfin arrangement is related to the heat transfer resistance of liquid film of refrigerant. The condensing heat transfer coefficients are high for the microfin tube with even distribution of liquid film.

  • PDF