• Title/Summary/Keyword: Over blurring

Search Result 36, Processing Time 0.022 seconds

Synchronization for VDSL system using DMT (DMT 방식을 이용한 VDSL시스템의 동기)

  • 최병익;우정수;임기홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10C
    • /
    • pp.951-962
    • /
    • 2002
  • A DMT transceiver recovers the sampling time from reserved sub-carriers, the pilots. Since the pilots are available after the FFT, the symbol synchronization must be done before sample synchronization. In DMT VDSL system, symbol synchronization is handled separately from sample synchronization, although the two processes are intimately related. The DMT symbol itself contains sufficient information, the cyclic extension, for symbol synchronization. Using only the sign bit of received signal, the Maximum Likelihood Estimation solution is derived. The Tx windowing in the transmitter of DMT VDSL system results in the blurring of MLE peaks. We propose the weighted summing MLE method using the sign bit which produces the clearly sharp top of MLE peaks. The stability of symbol synchronization is improved significantly by averaging over a few symbols. This paper presents the study of the original MLE and the weighted summing MLE using sign bit. A clock difference between transmitter and receiver destroys the oahogonality of the carriers. Therefore, a receiver using asynchronous sampling must perform timing correction in the discrete-time domain. We introduce an efficient digital sample synchronization method which is based on temporal and frequency domain digital signal processing.

Design and Fabrication of Binary Diffractive Optical Elements for the Creation of Pseudorandom Dot Arrays of Uniform Brightness (균일 밝기 랜덤 도트 어레이 생성을 위한 이진 회절광학소자 설계 및 제작)

  • Lee, Soo Yeon;Lee, Jun Ho;Kim, Young-Gwang;Rhee, Hyug-Gyo;Lee, Munseob
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • In this paper, we report the design and fabrication of binary diffractive optical elements (DOEs) for random-dot-pattern projection for Schlieren imaging. We selected the binary phase level and a pitch of 10 ㎛ for the DOE, based on cost effectiveness and ease of manufacture. We designed the binary DOE using an iterative Fourier-transform algorithm with binary phase optimization. During initial optimization, we applied a computer-generated pseudorandom dot pattern of uniform intensity as a target pattern, and found significant intensity nonuniformity across the field. Based on the evaluation of the initial optimization, we weighted the target random dot pattern with Gaussian profiles to improve the intensity uniformity, resulting in the improvement of uniformity from 52.7% to 90.8%. We verified the design performance by fabricating the designed binary DOE and a beam projector, to which the same was applied. The verification confirmed that the projector produced over 10,000 random dot patterns over 430 mm × 430 mm at a distance of 5 meters, as designed, but had a slightly less uniformity of 84.5%. The fabrication errors of the DOE, mainly edge blurring and spacing errors, were strong possibilities for the difference.

Estimation of Maximum Crack Width Using Histogram Analysis in Concrete Structures (히스토그램 분석을 이용한 콘크리트 구조물의 최대 균열 폭 평가)

  • Lee, Seok-Min;Jung, Beom-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.9-15
    • /
    • 2019
  • The purpose of present study is to assess the maximum width of the surface cracks using the histogram analysis of image processing techniques in concrete structures. For this purpose, the concrete crack image is acquired by the camera. The image is Grayscale coded and Binary coded. After Binary coded image is Dilate and Erode coded, the image is then recognized as separated objects by applying Labeling techniques. Over time, dust and stains may occur naturally on the surface of concrete. The crack image of concrete may include shadows and reflections by lighting depending on a surrounding conditions. In general, concrete cracks occur in a continuous pattern and noise of image appears in the form of shot noises. Bilateral Blurring and Adaptive Threshold apply to the Grayscale image to eliminate these effects. The remaining noises are removed by the object area ratio to the Labeled area. The maximum numbers of pixels and its positions in the crack objects without noises are calculated in x-direction and y-direction by Histogram analysis. The widths of the crack are estimated by trigonometric ratio at the positions of the pixels maximum numbers for the Labeled objects. Finally, the maximum crack width estimated by the proposed method is compared to the crack width measured with the crack gauge. The proposed method by the present study may increase the reliability for the estimation of maximum crack width using image processing techniques in concrete surface images.

Color Transient Improvement Algorithm Based on Image Fusion Technique (영상 융합 기술을 이용한 색 번짐 개선 방법)

  • Chang, Joon-Young;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.50-58
    • /
    • 2008
  • In this paper, we propose a color transient improvement (CTI) algorithm based on image fusion to improve the color transient in the television(TV) receiver or in the MPEG decoder. Video image signals are composed of one luminance and two chrominance components, and the chrominance signals have been more band-limited than the luminance signals since the human eyes usually cannot perceive changes in chrominance over small areas. However, nowadays, as the advanced media like high-definition TV(HDTV) is developed, the blurring of color is perceived visually and affects the image quality. The proposed CTI method improves the transient of chrominance signals by exploiting the high-frequency information of the luminance signal. The high-frequency component extracted from the luminance signal is modified by spatially adaptive weights and added to the input chrominance signals. The spatially adaptive weight is estimated to minimize the ${\iota}_2-norm$ of the error between the original and the estimated chrominance signals in a local window. Experimental results with various test images show that the proposed algorithm produces steep and natural color edge transition and the proposed method outperforms conventional algorithms in terms of both visual and numerical criteria.

Adaptive Block Recovery Based on Subband Energy and DC Value in Wavelet Domain (웨이블릿 부대역의 에너지와 DC 값에 근거한 적응적 블록 복구)

  • Hyun, Seung-Hwa;Eom, Il-Kyu;Kim, Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.95-102
    • /
    • 2005
  • When images compressed with block-based compression techniques are transmitted over a noisy channel, unexpected block losses occur. In this paper, we present a post-processing-based block recovery scheme using Haar wavelet features. No consideration of the edge-direction, when recover the lost blocks, can cause block-blurring effects. The proposed directional recovery method in this paper is effective for the strong edge because exploit the varying neighboring blocks adaptively according to the edges and the directional information in the image. First, the adaptive selection of neighbor blocks is performed based on the energy of wavelet subbands (EWS) and difference of DC values (DDC). The lost blocks are recovered by the linear interpolation in the spatial domain using selected blocks. The method using only EWS performs well for horizontal and vertical edges, but not as well for diagonal edges. Conversely, only using DDC performs well diagonal edges with the exception of line- or roof-type edge profiles. Therefore, we combined EWS and DDC for better results. The proposed methods out performed the previous methods using fixed blocks.

A Study on the Cognitive/Affective Personality and Experiential Factors Influencing on Smart Phone Users' Emotional Exhaustion and Education Performance (스마트폰 이용자의 정서적 소진과 학습 성과에 영향을 주는 인지·감성 성향과 사용 경험에 관한 연구)

  • Ming-Yuan Sun;Sundong Kwon;Yong-Young Kim
    • Information Systems Review
    • /
    • v.18 no.4
    • /
    • pp.69-88
    • /
    • 2016
  • Nowadays, organizations have adopted Smart Work to efficiently manage tasks, such as electronic document approval, customer management, and site inspection, without spatial-temporal constraints. Smartphones, which are commonly used in Smart Work, enable individuals to perform their jobs anytime and anywhere, thus blurring the boundary between work and non-work. To solve the problem of blurred work/non-work boundaries, a construct of self-control and affective factors needs to be considered because business style is changed from command to autonomy in the Smart Work context. Moreover, employees can convey their emotions easily over smartphones. Recent marketing studies have analyzed consumers' behavior based on the combination of cognitive, affective, and behavioral components, and researchers of information systems are also interested in these factors. However, previous research has some limitations, such as not classifying factors into cognitive, affective, and behavioral as well as not covering all three factors. Therefore, we explore the roles of cognitive, affective, and behavioral components in emotional exhaustion and education performance, and conduct a survey on undergraduate and graduate students, who are the major users of smartphones. Findings show that when individuals improve their cognitive capability (self-control) and usage experience (smartphone communication and internet usage), they can decrease emotional exhaustion and increase education performance. In the role of affective capability, increasing education performance is partially accepted. These results imply that organizations should not focus on controlling the usage of smartphones but on promoting appropriate smartphone usage.