• Title/Summary/Keyword: Over Temperature

Search Result 7,458, Processing Time 0.044 seconds

Changed Relationship between Snowfall over the Yeongdong region of the Korean Peninsula and Large-scale Factors

  • Cho, Keon-Hee;Chang, Eun-Chul
    • Journal of the Korean earth science society
    • /
    • v.38 no.3
    • /
    • pp.182-193
    • /
    • 2017
  • A typical snowfall pattern occurs over the east coastal region of the Korean Peninsula, known as the Yeongdong region. The precipitation over the Yeongdong region is influenced by the cold and dry northeasterly wind which advects over warm and moist sea surface of the East Sea of Korea. This study reveals the influence of large-scale factors, affecting local to remote areas, on the mesoscale snowfall system over the Yeongdong region. The National Centers for Environmental Prediction-Department of Energy reanalysis dataset, Extended Reconstructed sea surface temperature, and observed snowfall data are analyzed to reveal the relationship between February snowfall and large-scale factors from 1981 to 2014. The Yeongdong snowfall is associated with the sea level pressure patterns over the Gaema Plateau and North Pacific near the Bering Sea, which is remotely associated to the sea surface temperature (SST) variability over the North Pacific. It is presented that the relationship between the Yeongdong snowfall and large-scale factors is strengthened after 1999 when the central north Pacific has warm anomalous SST. These enhanced relationships explain the atmospheric patterns of recent strong snowfall years (2010, 2011, and 2014). It is suggested that the newly defined index in this study based on related SST variability can be used for a seasonal predictor of the Yeongdong snowfall with 2-month leading.

A Study on Statistical Downscaling for Projection of Future Temperature Change simulated by ECHO-G/S over the Korean Peninsula (한반도 미래 기온 변화 예측을 위한 ECHO-G/S 시나리오의 통계적 상세화에 관한 연구)

  • Shin, Jinho;Lee, Hyo-Shin;Kwon, Won-Tae;Kim, Minji
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.107-125
    • /
    • 2009
  • Statistical downscaled surface temperature datasets by employing the cyclostationary empirical orthogonal function (CSEOF) analysis and multiple linear regression method are examined. For evaluating the efficiency of this statistical downscaling method, monthly surface temperature of the ECMWF has been downscaled into monthly temperature having a fine spatial scale of ~20km over the Korean peninsula for the 1973-2000 period. Monthly surface temperature of the ECHOG has also been downscaled into the same spatial scale data for the same period. Comparisons of temperatures between two datasets over the Korean peninsula show that annual mean temperature of the ECMWF is about $2^{\circ}C$ higher than that of the ECHOG. After applying to the statistical downscaling method, the difference of two annual mean temperatures reduces less than $1^{\circ}C$ and their spatial patterns become even close to each other. Future downscaled data shows that annual temperatures in the A1B scenario will increase by $3.5^{\circ}C$ by the late 21st century. The downscaled data are influenced by the ECHOG as well as observation data which includes effects of complicated topography and the heat island.

Statistical Interpretation of Climate Change in Seoul, Korea, over the Last 98 Years

  • Kim, Eun-Shik
    • Journal of Ecology and Environment
    • /
    • v.33 no.1
    • /
    • pp.37-45
    • /
    • 2010
  • I conducted extensive analyses of daily weather data of precipitation and temperature monitored from the Surface Synoptic Meteorological Station in Seoul from 1 October 1907 to 31 December 2009 to understand how the climate is changing and the ecological implications for Seoul, Korea. Statistical analyses of the data, including the lengths of seasons and growing degree-days (GDD), showed a clear warming trend in the Seoul area over the study period. The mean daily temperature in Seoul increased by $2.40^{\circ}C$ over the period of one hundred years, which was about three times faster than the global trend and it was striking to notice that mean daily temperature in Seoul in recent 30 years was increasing with the rate of $5.50^{\circ}C$ per hundred years, which is an extremely fast rate of increase in temperature. In the last 100 years, an increase in the number of summer days was apparent, coupled with a reduction in the average number of winter days for about 27 to 28 days based on the analysis of mean daily temperature. Although the lengths of spring and autumn have not changed significantly over the century, early initiations of spring and late onsets of autumn were quite apparent. Total annual precipitation significantly increased at the rate of 2.67 mm/year over the last 100 years, a trend not apparent if the analysis is confined to periods of 30 to 40 years. The information has the potential to be used not only for better understanding of ecological processes and hydrology in the area, but also for the sustainable management of ecosystems and environment in the region.

Climate Change and Coping with Vulnerability of Agricultural Productivity (기후변화와 농업생산의 전망과 대책)

  • 윤성호;임정남;이정택;심교문;황규홍
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.220-237
    • /
    • 2001
  • Over the 20th century global temperature increase has been 0.6$^{\circ}C$. The globally averaged surface temperature is projected to increase by 1.4 to 5.8$^{\circ}C$ over the period 1990 to 2100. Nearly all land areas will have higher maximum temperature and minimum temperature, and fewer cold days and frost days. More intense precipitation events will take plate over many areas. Over most mid-latitude continental interiors will have increased summer continental drying and associated risk of drought. By 2100, if the annual surface temperature increase is 3.5$^{\circ}C$, we will have 15.9$^{\circ}C$ from 12.4$^{\circ}C$ at present. Also the annual precipitation will range 1,118-2,447 mm from 972-1,841 mm at present in Korea. Consequently the average crop periods for summer crops will be 250 days that prolonged 32 days than at present. In the case of gradual increase of global warming, an annual crop can be adapted to the changing climate through the selection of filial generations in breeding process. The perennial crops such as an apple should be shifted the chief producing place to northern or high latitude areas where below 13.5$^{\circ}C$ of the annual surface temperature. If global warming happens suddenly over the threshold atmospheric greenhouse gases, then all ecosystems will have tremendous disturbance. Agricultural land-use plan, which state that farmers decide what to plant, based on their climate-based advantages. Therefore, farmers will mitigate possible negative imparts associated with the climate change. The farmers will have application to use agricultural meteorological information system, and agricultural long-range weather forecast system for their agroecosystems management. The ideal types of crops under $CO_2$ increase and climate change conditions are considered that ecological characteristics need indispensable to accomplish the sustainable agriculture as the diversification of genetic resources from yield-oriented to biomass-oriented characteristics with higher potential of $CO_2$ absorption and primary production. In addition, a heat-and-cold tolerance, a pest resistance, an environmental adaptability, and production stability should be also incorporated collectively into integrated agroecosystem.

  • PDF

Assessment of causality between climate variables and production for whole crop maize using structural equation modeling

  • Kim, Moonju;Sung, Kyungil
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.339-353
    • /
    • 2021
  • This study aimed to assess the causality of different climate variables on the production of whole crop maize (Zea mays L.; WCM) in the central inland region of the Korea. Furthermore, the effect of these climate variables was also determined by looking at direct and indirect pathways during the stages before and after silking. The WCM metadata (n = 640) were collected from the Rural Development Administration's reports of new variety adaptability from 1985-2011 (27 years). The climate data was collected based on year and location from the Korean Meteorology Administration's weather information system. Causality, in this study, was defined by various cause-and-effect relationships between climatic factors, such as temperature, rainfall amount, sunshine duration, wind speed and relative humidity in the seeding to silking stage and the silking to harvesting stage. All climate variables except wind speed were different before and after the silking stage, which indicates the silking occurred during the period when the Korean season changed from spring to summer. Therefore, the structure of causality was constructed by taking account of the climate variables that were divided by the silking stage. In particular, the indirect effect of rainfall through the appropriate temperature range was different before and after the silking stage. The damage caused by heat-humidity was having effect before the silking stage while the damage caused by night-heat was not affecting WCM production. There was a large variation in soil surface temperature and rainfall before and after the silking stage. Over 350 mm of rainfall affected dry matter yield (DMY) when soil surface temperatures were less than 22℃ before the silking stage. Over 900 mm of rainfall also affected DMY when soil surface temperatures were over 27℃ after the silking stage. For the longitudinal effects of soil surface temperature and rainfall amount, less than 22℃ soil surface temperature and over 300 mm of rainfall before the silking stage affected yield through over 26℃ soil surface temperature and less than 900 mm rainfall after the silking stage, respectively.

Near Future Projection of Extreme Temperature over CORDEX-East Asia Phase 2 Region Using the WRF Model Based on RCP Scenarios (RCP 시나리오 기반 WRF를 이용한 CORDEX-동아시아 2단계 지역의 가까운 미래 극한기온 변화 전망)

  • Seo, Ga-Yeong;Choi, Yeon-Woo;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.585-597
    • /
    • 2019
  • This study evaluates the performance of Weather Research and Forecasting (WRF) model in simulating temperature over the COordinated Regional climate Downscaling EXperiment-East Asia (CORDEX-EA) Phase 2 domain for the reference period (1981~2005), and assesses the changes in temperature and its extremes in the mid-21st century (2026~2050) under global warming based on Representative Concentration Pathway (RCP) scenarios. MPI-ESM-LR forced by two RCP scenarios (RCP2.6 and RCP8.5) is used as initial and lateral boundary conditions. Overall, WRF can capture the observed features of temperature distribution reflecting local topographic characteristic, despite some disagreement between the observed and simulated patterns. Basically, WRF shows a systematic cold bias in daily mean, minimum and maximum temperature over the entire domain. According to the future projections, summer and winter mean temperatures over East Asia will significantly increase in the mid-21st century. The mean temperature rise is expected to be greater in winter than in summer. In accordance with these results, summer (winter) is projected to begin earlier (later) in the future compared to the historical period. Furthermore, a rise in extreme temperatures shows a tendency to be greater in the future. The averages of daily minimum and maximum temperatures above 90 percentiles are likely to be intensified in the high-latitude, while hot days and hot nights tend to be more frequent in the low-latitude in the mid-21st century. Especially, East Asia would be suffered from strong increases in nocturnal temperature under future global warming.

Effects of Glass Particle Size on Sintering Behaviors of the Glass-Alumina Composites for Low Firing Temperature (저온 소성용 유리-알루미나 복합체에서 유리 입자크기에 따른 소결거동)

  • 박덕훈;김봉철;김정주;박이순
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.545-551
    • /
    • 2000
  • Sintering behaviors of the glass-alumina composites for low firing temperature were investigated as a function of the particle size of glass frit. The system of glass frit was Pb-B-Si-Al-O. The median particle sizes of the glass frits were 2.72$\mu\textrm{m}$, 2.67$\mu\textrm{m}$ and 1.33$\mu\textrm{m}$, which were prepared with changing ball-milling times as 24 h, 48 h and 96 h. The glass-alumina composites showed maximum density at certain temperature, and further heating led to dedensification behaviors, so called over-firing. The sintering temperature, which showed maximum density, raised from 425$^{\circ}C$ to 475$^{\circ}C$ with increase of particle size of glass frit from 1.33$\mu\textrm{m}$ to 2.72$\mu\textrm{m}$. Especially, the over firing behaviors, which were occurred at high sintering temperatures, were greatly increased with decrease of particle size of glass frit.

  • PDF

The Dissolving Reaction of Solid Iron with Molten Zinc (고체철-용융아연의 용해반응)

  • Yoon, Byung-Ha;Chung, In-Sang;Park, Kyung-Chae
    • Journal of Surface Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.1-7
    • /
    • 1976
  • The dissolving and growth kinetics of intermetallic compounds for the reaction between solid iron and molten zinc were studied under nitorgen atmosphere over the temperature range between470$^{\circ}C$ and 680$^{\circ}C$. The rates of dissolution of solid iron into molten zinc were obtained under a static conditon, The amount of dissolution of sold iron and the growth of intermetalic compounds could be determined by means of microscopy. The thickness of intermetallic compound at a given temperature increases with increasing time, whereas for a given time decreases with increasing temperature . The rate of dissolution is controlled by the diffusion process of iron in the effective boundary layer of molten zinc over the temperature range 470$^{\circ}$-530$^{\circ}C$, 570$^{\circ}$-620$^{\circ}C$, and 650$^{\circ}$-665$^{\circ}C$, while by the surface reaction over the range 530$^{\circ}$-570$^{\circ}C$ and 620$^{\circ}$-650$^{\circ}C$.

  • PDF

NO Reduction and Oxidation over PAN based-ACF

  • Kim, Je-Young;Lee, Jong-Gyu;Hong, Ik-Pyo
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2000
  • Catalytic reduction and oxidation of NO over polyacrylonitrile based activated carbon fibers (PAN-ACF) under various conditions were carried out to develop removal process of NO from the flue gas. The effect of temperature, oxygen concentration and the moisture content for the reduction of NO with ammonia as a reducing agent was investigated. The reduction of NO increased with the oxygen concentration, but decreased with the increased temperature. The moisture content in the flue gas affects the reduction of NO as the inhibition of the adsorption of the other components and the reaction on the surface of ACE For the oxidation of NO to $NO_2$ over PAN-ACF without using a reducing gas, it showed the temperature and the oxygen concentration of the flue gas are the important factors for the NO conversion in which the conversion increased with oxygen concentration and decreased with the temperature increase and might be the alternative option for the selective catalytic reduction process.

  • PDF

A Study on Electric Safety Control Device for Prevention of Over Current and Short Circuit Faults (과전류 및 단락사고 방지용 전기안전 제어장치에 관한 연구)

  • Jo, Si-Hwan;Kwak, Dong-Kurl;Jung, Do-Young;Shim, Jae-Sun;Kim, Jung-Sook
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2100-2101
    • /
    • 2008
  • This paper is studied on a protective control system for electrical fire and electrical faults due to over current or electric short circuit faults by using electrical thermal characteristics of PTC (Positive Temperature Coefficient) thermistor and current response characteristics of high sensitive reed switch. The PTC thermistor has characteristic of positive resistivity temperature coefficient according to the temperature variation, which is construction of a regular square and cube demarcation with BaTiO3_Ceramics of positive temperature coefficient. Also PTC thermistor shows the phenomenon which is rapidly increased in the resistivity if the temperature is increased over Curie temperature point, and reed switch, which is used for electrical fault current sensing devices, have a excellent characteristic of response velocity in degree of ${\mu}s{\sim}ms$ that sensing magnetic flux in proportion to dimension of line current. This paper is proposed on a protective control system use PTC thermistor and reed switch for sensor which is protected from electrical fire due to overload faults or electric short circuit faults. Some experimental results of the proposed electric safety control device are confirmed to the validity of the analytical results.

  • PDF