• Title/Summary/Keyword: Outsole

Search Result 55, Processing Time 0.047 seconds

Direct Machining for Outs ole Mold of Shoes Using Reverse Engineering (역설계를 이용한 신발 밑창 금형의 직접 가공)

  • 염정노;박용복
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.3
    • /
    • pp.167-174
    • /
    • 2003
  • The outsole mold of the shoes has been manufactured using electro-discharge machining by graphite electrode or using casting etc. The study is concerned with the measurement of the mold of the shoes in use, the modeling by CAD/CAM system, the generation of NC data and the machining by CNC machining center. The machining has been performed from the data type obtained from 3-dimensional measurement points of mold in use. The ball end mill and the engraving cutter is used as cutter and the cutting conditions are adjusted according to the shapes and sizes of the cutter and part in cutting. The method has proposed the possibility for higher productivity and quality on mold-manufacturing of shoes outsole.

The Influence of Angle Change of the Forefoot's Adhesive Outsole Designs on the Electromyographic Activity of the Erector Spinae and Selected Lower Limb Muscles during Downhill Walking (내리막 보행시 발 전족부 부착형 아웃솔의 각도 변화가 척추기립근과 하지근의 근활성도에 미치는 영향)

  • Lee, Haeng-Seob;Chae, Woen-Sik;Jung, Jea-Hu;Kim, Dong-Soo;Lim, Young-Tae;Jang, Jea-Ik
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.139-149
    • /
    • 2014
  • The purpose of this study was to evaluate the effect of angle change of forefoot's adhesive outsole on the electromyographic activity (EMG) of the erector spinae and selected lower limbs muscle during downhill walking over $-20^{\circ}$ ramp. Thirteen male university students (age: $25.4{\pm}3.9$ yrs, height: $176.2{\pm}5.1$ cm, weight: $717.4{\pm}105.0$ N) who have no musculoskeletal disorder were recruited as the subjects. To assess the myoelectric activities of selected muscles, six of surface EMG electrodes with on-site pre-amplification circuitry were attached to erector spinae (ES), rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), lateral gastrocnemius (LG), and medial gastrocnemius (MG). To obtain maximum EMG levels of the selected muscles for normalization, five maximum effort isometric contraction were performed before the experimental trials. Each subject walked over $0^{\circ}$ and $20^{\circ}$ ramp with three different forefeet's EVA outsole (0, 10, $20^{\circ}$) in random order at a speed of $1.2{\pm}0.1$ m/s. For each trial being analyzed, five critical instants and four phases were identified from the recording. The results of this study showed that the average muscle activities of MG and LG decreased in $20^{\circ}$ shoes compared to $0^{\circ}$ and $10^{\circ}$ ones in the initial double limb stance (IDLS). In initial single limb stance (ISLS) phase, the average muscle activities of ES increased with the angle of forefoot's adhesive outsole, indicating that the increment of shoes' angle induce upper body to flex anteriorly in order to maintain balance of trunk. In terminal double limb stance (TDLS) phase, average muscle activities of TA significantly increased in $20^{\circ}$ outsole compared to $0^{\circ}$ and $10^{\circ}$ ones. There was no external forces acting on the right foot other than the gravity during terminal single limb stance (TSLS) phase, all muscles maintained moderate levels of activity.

Analysis and Design of Shoes Using Non-Linear Finite Element Method (비선형 유한요소법을 이용한 신발 해석 및 설계)

  • Kim, B.S.;Moon, B.Y.
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.195-205
    • /
    • 2003
  • This paper presents an analytic method and a design technique for golf shoes with air-cycled pump in the midsole. The golf shoes are modeled using the finite element method for better design by considering the configuration of the midsole and the outsole, which compose the golf shoes. Also the optimum size and shape of air-cycled pump in the midsole is examined. The values or standard human pressure for boundary conditions are adopted for the FEA(Finite Element Analysis). The unknown constants of the strain energy function of Ogden type are observed in accordance with the axial tension test. By the commercial FEM software for nonlinear analysis, MARC V7.3, the strains and the values of volume change for the midsole and the outsole are obtained, respectively. It can be concluded that results obtained by FEM in the midsole and the outsole are different depending on the characteristic of elastomer The results reported herein provide better understanding of analyzing the golf shoes. Moreover, it is believed that those properties of the results can be utilized in the shoes industry to develop the effective design method.

Taguchi-based robust design for the footwear outsole pelletizing machine cutter (다구찌 방법을 이용한 신발 아웃솔 펠레타이징 기계 절단부의 강건설계)

  • Kwon, Oh-Hun;Koo, Pyung-Hoi;Kwon, Hyuck-Moo
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.4
    • /
    • pp.935-949
    • /
    • 2016
  • Purpose: This study attempts to find out the optimum condition of the rotary cutter making pellet in the footwear outsole process. The pellets are used in the process of outsole rubber fabrication to reduce cycle time and save raw material. Methods: Computer simulations are used to analyze the maximum stress in the rotary cutter after designing a variety of cutter shapes. Taguchi method is used to identify the robust condition of the cutter. In $L_{18}$ orthogonal array, the control factors such as knife width, twisted angle, number of knives, diameter, knife depth and supported angle are considered and noise factors like assembly tolerance and amount of antifriction are allocated. Results: It is found that the most important factors to reduce maximum stress in the cutter are supported angle and diameter. Using Tacuchi's results, we can reduce 70% cycle time and 9% raw material compared to the traditional method using cutting die. Conclusion: When designing the rotary cutter, the best conditions are the diameter at its maximum allowable value and supported angle in the boundary of machine inner space.

The Development of Outsole for Wet Traction Enhancement (습윤 접지력 향상을 위한 안전화 겉창 개발 연구)

  • Kim, Jung Soo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.33-38
    • /
    • 2013
  • Many occupational workers or professionals have to walk on the various floors for a long period of time. The objective of this study was to develop the safety shoes with increased traction through the material selection. In order to fulfill our objective, first, two kinds of filler were selected to compare the wear mechanism at outsole surface. The developed rubber materials were tested with two kinds of portable slip meters. The sample safety shoes with developed rubber materials were also tested with subject in the laboratory. During walking, the safety shoes were naturally abraded with counter surface. The coefficient of friction(COF) was gradually decreased with number of steps to 30,000, while the COF was abruptly increased from 30,000 to 40,000. The experimental results showed that COF tested with silica rubber was at least 10% higher than that with carbon black rubber in wet or detergent condition. It has been well recognized that filler properties play a important role in wet traction in the tire industry. However it has been unclear that filler properties would be decisive factor in safety shoes. Our study shows that silica exhibits a higher slip resistance than carbon black without reference to wear states in wet or detergent condition. So, this results will provide guides for outsole compounders to develop new products and improve product performance.

A analysis of friction relation between tennis outsole and tennis playing surfaces (테니스화겉창과 테니스 스포츠바닥재간의 마찰관계상관 분석)

  • Kim, Jung-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.361-380
    • /
    • 2002
  • The purposes of this study were to a analysis of friction relation between tennis outsole and tennis playing surfaces. Tennis footwear is an important component of tennis game equipment. It can support or damage players performance and comfort. Most importantly athletic shoes protect the foot preventing abrasions and injuries. Footwear stability in court sports like tennis is incredibly important since it is estimated that as many as 45% of all lower extremity injuries occur in the foot and ankle. The friction force is the force exerted by a surface as an object moves across it or makes an effort to move across it. The friction force opposes the motion of the object. Friction results when two surfaces are pressed together closely, causing attractive intermolecular forces between the molecules of the two different surfaces. The outsole provides traction and reduces wear on the midsole. Today's outsoles address sport specific movements (running versus pivoting) and playing surface types. Different areas of the outsole are designed for the distinct frictional needs of specific movements. Traction created by the friction between the outsole and the surface allows the shoe to grip the surface. As surfaces, conditions and player motion change, traction may need to vary. An athletic shoe needs to grip well when running but not when pivoting. Laboratory tests have demonstrated force reductions compared to impact on concrete. There is a correlation between pain, injury and surface hardness. These are a variety of traction patterns on the soles of athletic shoes. Traction like any other shoe characteristic must be commensurate and balanced with the sport. The equal and opposite force does not necessarily travel back up your leg. The surface itself absorbs a portion of the force converting it to other forms of energy. Subsequently, tennis court surfaces are rated not only for pace but also for the percentage of force reduction.

Improvement of Abrasion Resistance and Friction of Rubber Blend Composition

  • Lee, Jong-Hwan;Lee, Jieun;Han, Tak Jin;Jeong, Hye Min
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.161-166
    • /
    • 2020
  • On the basis of the use of shoes, the outsole, which is mainly made of rubber, has various characteristics. The most important of these characteristics is abrasion resistance and friction. Generally, the abrasion resistance can be improved by adding more reinforcing filler such as silica to the rubber; however, the friction force drops. Owing to these problems, rubber having excellent abrasion resistance and rubber having excellent frictional force are blended. In this study, various characteristics, including wear resistance and friction, were evaluated by blending NBR/SBR or NBR/BR mixture with high wear resistance and CIIR with high friction. The CIIR was increased up to 60 phr, whereas the friction wear characteristics were rapidly changed in the NBR/CIIR blend ratio from 75:15 to 60:30.

The Effect of Form of Outsole on Lower Leg Electromyography during Gait (보행시 신발 밑창 형태가 하지 근활성도에 미치는 영향)

  • Kim, Jong-Sun;Choi, Hyun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.227-235
    • /
    • 2012
  • The purpose of this study was to analysis the effect of form of outsole on lower leg Electromyography (EMG) during gait. The subject were 11 women(mean age $47.33{\pm}4.4$ years, height $158.00{\pm}3.3$cm, weight $59.50{\pm}6.1$, body mass index $23.80{\pm}1.8kg/m^2$), who had no serious foot musculoskeletal disease within3years prior to study. The vastus medialis, gastrocnemius, semitendinosus, tibialis anterior were compared during gait with 2 types of shoe(complex function double rocker sole, negative-heel rocker sole) by using pair t-test(p<.05). The vastus medialis, gastrocnemius, semitendinosus were not found to be significantly different among the 2 types of shoe but tibialis anterior were found(p<.05). The complex function double rocker sole shoe caused a significant change in energy expenditure compared to the negative-heel rocker sole shoe.

Study on Measuring Mechanical Properties of Sport Shoes Using an Industrial Robot (산업용 로봇을 이용한 스포츠화의 운동역학특성 측정에 관한 연구)

  • Lee, Jong-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3833-3838
    • /
    • 2009
  • This paper introduces a measurement system for mechanical properties of sport shoes using an industrial robot. The robot system used in this paper is a commercial Puma type robot system(FARA AT2 made by SAMSUNG Electronics) with 6 joints and the end-effector is modified to produce a human walking motion. After analyzing human walking with a high speed video camera, each joint angle of the robot system is extracted to be used in the robot system. By using this system, ground impact forces were measured during stepping motion with 3 different shoe specimens made of 3 different hardness outsoles, respectively. As other mechanical properties, both bending moments to bend the toe part of the same specimen shoes and pronation quantities during walking motion were measured as well. In the impact test with the same depth of deformation under the ground level, the effect of the outsole hardness was clearly appeared such that the harder outsole produces the higher ground reaction force. The bending test and the pronation test also show proportional increments in the bending stiffness and the moment Mx according to the outsole hardness. Throughout such experiments, the robot system has produced consistent results so that the system could be used in obtaining valuable informations for a shoe designing process.