• Title/Summary/Keyword: Output feedback controller

Search Result 535, Processing Time 0.024 seconds

Robust Control for Rotational Inverted Pendulums Using Output Feedback Sliding Mode Controller and Disturbance Observer

  • Park, Jeong-Ju;Kim, Jong-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1466-1474
    • /
    • 2003
  • This paper presents a system modeling, controller design and implementation for a rotational inverted pendulum system (RIPS), which is an under-actuated system and has the problem of unattainable velocity state. Two control strategies are applied to the RIPS. One is a sliding mode control method using the parameterization of both the hyperplane and the compensator for output feedback. The other is the disturbance observer which estimates disturbance and some modeling errors of RIPS with less computational effort. Some simulations and various kinds of experiments are performed in order to verify that the proposed controller has the ability to control RIPS whose velocity is assumed to be unavailable. The results of the simulations and experiments show that the proposed control system has superior performance for disturbance rejection and regulation at certain initial conditions as well as the robustness to model uncertainties.

Tracking Controller Design Using Delayed Output Feedback For Systems With Stiff Nonlinearities (심한 비선형성을 갖는 시스템의 시간지연 출력궤환을 이용한 추종제어기의 설계)

  • 나승유
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.4
    • /
    • pp.342-349
    • /
    • 1991
  • In this paper, a method is presented for designing a tracking and disturbance rejecting controller for a nonlinear control system in which approximate linearization is not applicable due to a s stiff nonlinearity. Only the measurable variables are used for the controller synthesis. The system is augmented by a compensator at the output side for the tracking and disturbance rejection. An output delayed feedback controller is designed for the augmented system without nonlinearity. Then the feedback parameters are adjusted by describing function method to overcome the limit cycle due to the nonlinearity.

  • PDF

Output feedback receding horizon control for uncertain LTV systems

  • Seuncheol Jeong;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.27.3-27
    • /
    • 2001
  • In this paper, a robust receding horizon controller for uncertain linear time-varying systems is presented in the dynamic output-feedback form. The existing output-feedback receding horizon controller in the literature is composed of a state observer and a static controller associated with the observer states (similar to LQC control), where the fundamental assumption is that the state observer will supply the exact states as time goes up. The performance of those controllers may be much degraded and even the closed-loop stability may not be guaranteed when the system suffers from disturbances and uncertainties or is time-varying. The proposed controller, which is not necessary to have the state-observer, overcomes such difficulties. Using matrix inequality conditions on the terminal weighting matrix, the closed-loop system stability is guaranteed. Numerical examples are ...

  • PDF

An Output Feedback $H_\infty$ Controller Design for Linear Systems with Commensurate Time Delay (커멘슈레이트 시간지연을 갖는 선형시스템의 출력궤환 $H_\infty$ 제어기 설계)

  • Yoo, Seog-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.1-10
    • /
    • 2000
  • This paper deals with an H$_{\infty}$ output feedback control problem for linear systems with commensurate time delay in both state and input variables. The proposed output feedback controller also has commensurate time delay terms in the controller state. The controller can be synthesized based on the solution of the linear matrix inequalities(LMI) which can be easily solved using the convex optimization method. In order to demonstrate the efficacy of the proposed method, numerical examples are presented.

  • PDF

Control System Design for the Focus Servo System of DVD Drive (DVD 드라이브의 포커스 서보 시스템 제어기 설계)

  • 한기봉;이시복
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.49-56
    • /
    • 2001
  • In this paper, two plant models, of which one is newly developed and the other one is the conventional one, of the focus servo system of DVD drive are presented and a two-degree-of freedom controller consisted of Inverse dynamics feedforward and LQG/LTR feedback controller is designed. The newly developed plant model is used to design the feedforward controller and the conventional model is used for the design of feedback controller. The output of newly developed model is the displacement of objective lens and the output of conventional model is the focus error of the DVD focus servo system. The displacement of the objective lens is estimated by the dynamics model of the DVD focus servo system. The disturbance rejection performance of the two-degree-of freedom controller is compared with that of an LQG/LTR one.

  • PDF

Control of Electromagnetic Levitation System using ε-scaling Partial State Feedback Controller (ε조절 요소를 가진 부분 상태 궤환 제어기를 이용한 자기부상 시스템의 제어)

  • Park, Gyu-Man;Choi, Ho-Lim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1572-1576
    • /
    • 2011
  • The electromagnetic levitation(EMS) system is one of the well-known nonlinear system because of its nonlinearity and several control techniques have been proposed. We propose an ${\epsilon}$-scaling partial feedback controller for the ball position control of the EMS system. The key feature of our proposed controller is the use of the scaling factor ${\epsilon}$ which provides a function of controller gain tuning along with robustness. In this paper, we show the stability analysis of our proposed controller and the convergence analysis of the state observer in terms of ${\epsilon}$-scaling factor. In addition, the experimental results show the validity of the proposed controller and improved control performance over the conventional PID controller.

Design of a State Feedback Controller with a Current Estimator in Brushless DC Motors (전류추정기에 의한 브러시리스 직류전동기의 상태변수 궤환제어기 설계)

  • Oh, Tae-Seok;Shin, Yun-Su;Kim, Il-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.589-595
    • /
    • 2007
  • This paper presents a new method on controller design of brushless dc motors. In such drives the current ripples are generated by motor inductance in stator windings and the back EMF. To suppress the current ripples the current controller is generally used. To minimize the size and the cost of the drives it is desirable to control motors without the current controller and the current sensing circuits. To estimate the motor CUlTent it is modeled by a neural network that is contigured as an output-error dynamic system. The identified model is essentially a one step ahead prediction structure in which past inputs and outputs are used to calculate the current output. Using the model, a state feedback controller to compensate the effects of disturbance has been designed. The controller is implemented by a 16-bit microprocessor and the effectiveness of the proposed control method is verified through experiments.

Decentralized Dynamic Output Feedback Controller for Discrete-time Nonlinear Interconnected Systems via T-S Fuzzy Models (이산 시간 비선형 상호 결합 시스템의 T-S 퍼지 모델을 위한 분산 동적 출력 궤한 제어기 설계)

  • Koo, Geun-Bum;Kim, Jin-Kyu;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.780-785
    • /
    • 2007
  • This paper proposes the decentralized dynamic output feedback controller for discrete-time nonlinear interconnected systems using Takagi-Sugeno (T-S) fuzzy model. Through T-S fuzzy model of each subsystem, the decentralized dynamic output feedback controller is designed. By the closed-loop subsystems with controller, it represents the linear matrix inequality (LMI) for stability of whole interconnected system. The value of control gain are obtained by LMI. An example is given to show the experimentally verification discussed throughout the paper.

Decentralized Fuzzy Output Feedback Controller for Nonlinear Interconnected System with Time Delay (시간 지연이 있는 비선형 상호 결합 시스템의 분산 퍼지 출력 궤환 제어기 설계)

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.335-340
    • /
    • 2008
  • In this paper, a decentralized fuzzy output feedback controller for nonlinear interconnected systems with time delay is proposed. The nonlinear interconnected system is represented to fuzzy system using Takagi-Sugeno (T-S) fuzzy model. The decentralized output feedback controller is designed(or stability of subsystems of the fuzzy interconnected system. The stable condition of the closed-loop subsystem is represented to the linear matrix inequality (LMI) form and control gain is obtained by LMI. An example is given to show the verification discussed throughout the paper.

Output Feedback Sliding Mode Control with High-gain Observer (고이득 관측기를 이용한 슬라이딩 모드 제어기 설계)

  • Oh, Seungrohk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2003
  • We consider a single-input-single-output nonlinear system which is represented in a normal form. The model contains the uncertainty. A high-gain observer is used to estimate the states variables to reject a modeling uncertainty We design the globally bounded output feedback controller using sliding mode control to stabilize the closed-loop system. The globally bounded output feedback controller reduce the peaking in the states variables. The proposed method give a more design freedom in the design of the globally bounded controller than that of the previous work.