• Title/Summary/Keyword: Output dose

Search Result 290, Processing Time 0.029 seconds

Analysis of Relative Output Factors for Cyberknife: Comparison of Son Chambers, Diode Detector and Films (사이버나이프 출력인자 분석: 전리함, 다이오드 검출기 및 필름)

  • Jang Ji-Sun;Shin Dong-Oh;Choi Byung-Ock;Lee Tae-Kyu;Choi Ihl-Bohng;Kim Moon-Chan;Kwon Soo-Il;Kang Young-Nam
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2006
  • The accuracy of the dosimetry in the Cyberknife system is accomplishing important role from all processes of the stereotactic radiosurgery. In this study, we estimated relative output factors for Cyberknife. All measurements were peformed by six different detectors: diode detector, X-Omat V film, Gafchromic EBT film, 0.015 cc, 0.125 cc and 0.6 cc ionization chamber The diode detector and three ionization chambers peformed using water phantom at 80 cm SSD and 1.5 cm depth. When the film measurements were peformed, the water phantom was replaced with a solidwater phantom. Each collimator normalized with respect to the output factor of the largest collimator (60 mm). For the collimators over than 30 mm, the output factors from the different detectors showed a good agreement within 0.5% except 0.6 cc ion chamber For the collimators less than 15 mm, there were substantial differences In the output factors among different detectors. That is, the value of output factor for the 5 mm collimator of a diode and Gafchromic film was each $0.656{\pm}0.009$ and $0.777{\pm}0.013$. In the ion chamber and diode detector, those difference were due to the presence of large dose gradients and lack of electronic equilibrium in narrow megavoltage x-ray beams Therefore, the Gafchromic EBT film were considered more accurate than the others detectors.

  • PDF

10 MV X-ray Beam Dosimetry by Water and White Polystyrene Phantom (물과 백색폴리스티렌 팬텀에 의한 10 MV X-선 빔 선량계측)

  • Kim, Jong-Eon;Cha, Byung-Youl;Kang, Sang-Sik;Park, Ji-Koon;Sin, Jeong-Wook;Kim, So-Yeong;Jo, Seong-Ho;Son, Dae-Woong;Choi, Chi-Won;Park, Chang-Hee;Yoon, Chun-Sil;Lee, Jong-Duk;Park, Byung-Do
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.83-87
    • /
    • 2008
  • The purpose of this study is to get the correction factor to correct the measured values of the absolute absorbed dose proportional to the water equivalent depth. The measurement conditions in white polystyrene and water phantoms for 10MV X-ray beam are that the distance of source to center of ionization chamber is fixed at SAD 100 cm, the field sizes are $10{\times}10\;cm^2$, $20{\times}20\;cm^2$ and the depths are 2.3 cm, 5 cm, 10 cm, and 15 cm, respectively. The mean value of ionization was obtained by three times measurements in each field size and depths after delivering 100 MU from linear accelerator with output of 400 MU per min to the two phantoms. The correction factor and the percentage deviation in TPR were obtained below 0.97% and 0.53%, respectively. Therefore, we can get high accuracy by using the correction factor and the percentage deviation in TPR in measuring the absolute absorbed dose with the solid water equivalent phantom.

  • PDF

Calculation of depth dose for irregularly shaped electron fields (부정형 전자선 조사면의 심부선량과 출력비의 계산)

  • Lee, Byoung-Koo;Lee, Sang-Rok;Kwon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.79-84
    • /
    • 2002
  • The main cause factor for effective the output, especially in small & irregular shaped field of electron beam therapy, are collimation system, insert block diameter and energy. In the absorption deose of treatment fields, we should consider the lateral build-up ratio (LBR), which the ratio of dose at a point at depth for a given circular field to the dose at the same point for a 'broad-field', for the same incident fluence and profile. The LBR data for a small circular field are used to extract radial spread of the pencil beam, ${\sigma}$, as a function of depth and energy. It's based on elementary pencil beam. We consider availability of the factor, ${\sigma}$, in the small & irregular fields electron beam treatment.

  • PDF

Development of 3-D Stereotactic Localization System and Radiation Measurement for Stereotactic Radiosurgery (방사선수술을 위한 3차원 정위 시스템 및 방사선량 측정 시스템 개발)

  • Suh, Tae-Suk;Suh, Doug-Young;Park, Sung-Hun;Jang, Hong-Seok;Choe, Bo-Young;Yoon, Sei-Chul;Shinn, Kyung-Sub;Bahk, Yong-Whee;Kim, Il-Hwan;Kang, Wee-Sang;Ha, Sung-Whan;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.25-36
    • /
    • 1995
  • The purpose of this research is to develop stereotactic localization and radiation measurement system for the efficient and precise radiosurgery. The algorithm to obtain a 3-D stereotactic coordinates of the target has been developed using a Fisher CT or angio localization. The procedure of stereotactic localization was programmed with PC computer, and consists of three steps: (1) transferring patient images into PC; (2) marking the position of target and reference points of the localizer from the patient image; (3) computing the stereotactic 3-D coordinates of target associated with position information of localizer. Coordinate transformation was quickly done on a real time base. The difference of coordinates computed from between Angio and CT localization method was within 2 mm, which could be generally accepted for the reliability of the localization system developed. We measured dose distribution in small fields of NEC 6 MVX linear accelerator using various detector; ion chamber, film, diode. Specific quantities measured include output factor, percent depth dose (PDD), tissue maximum ratio (TMR), off-axis ratio (OAR). There was small variation of measured data according to the different kinds of detectors used. The overall trends of measured beam data were similar enough to rely on our measurement. The measurement was performed with the use of hand-made spherical water phantom and film for standard arc set-up. We obtained the dose distribution as we expected. In conclusion, PC-based 3-D stereotactic localization system was developed to determine the stereotactic coordinate of the target. A convenient technique for the small field measurement was demonstrated. Those methods will be much helpful for the stereotactic radiosurgery.

  • PDF

Influence of Cilnidipine on Catecholamine Release Evoked by Cholinergic Stimulation and Membrane Depolarization in the Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon;Woo, Seong-Chang;Ko, Suk-Tai
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.95-95
    • /
    • 2001
  • Ciinidipine (FRC-8635) is a newly synthesized novel DHP type of organic Ca$\_$2+/channel blockers that have been developed so far in Japan (Yoshimoto et al., 1991 : Hosono et at., 1992). It also has a blocking action on L-type voltage-dependent Ca$\^$2+/channel (VDCCs) in the rabbit basilar artery (Oike et al., 1990) and a slow-onset and long-lasting hypotensive action in clinical and experimental studies (Ikeda et al., 1992 ; Tominaga et al., 1997). Recent electrophysiological data indicate that cilnidipine might be a dual-channel antagonist for peripheral neuronal N-type and vascular L-type Ca$\^$2+/channels (Oike et al., 1990 ; Fujii et al., 1997; Uneyama et at., 1997). However, little is known about the involvement of N-type VDCCs in contributing to the muscarinic receptor-mediated CA secretion. Therefore, the present study was attempted to investigate the effect of cilinidipine on secretion of catecholamines (CA) evoked by ACh, high K$\^$+/, DMPP and McN-A-343 from the isolated perfused rat adrenal gland. Cilnidipine (1-10 ${\mu}$M) perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition in CA secretory responses evoked by ACh (5.32${\times}$10$\^$-3/M), DMPP (10$\^$-4/ M for 2 min) and McN-A-343 (10$\^$-4/ M for 2 min). However, lower dose of lobeline did not affect CA secretion by high K$\^$+/(5.6${\times}$10$\^$-2/ M), higher dose of it reduced greatly CA secretion of high K$\^$+/. Cilnidipine itself did also fail to affect basal catecholamine output. Furthermore, in adrenal glands loaded with cilnidipine (10 ${\mu}$M), CA secretory response evoked by Bay-K-8644 (10 ${\mu}$M), an activator of L-type Ca$\^$2+/channels was markedly inhibited while CA secretion by cyclopiazonic acid (10 ${\mu}$M), an inhibitor of cytoplasmic Ca$\^$2+/-ATPase was no affected. Moreover, $\omega$-conotoxin GVIA (1 ${\mu}$M), given into the adrenal gland for 60 min, also inhibited time-dependently CA secretory responses evoked by ACh and high K$\^$+/.

  • PDF

Study for Multi Channel Radiation Detector Using of Microfilm and Carbon Electrode (탄소막 마이크로필름을 이용한 다채널 전리함 개발에 관한 연구)

  • Shin Kyo Chul;Yun Hyong Geun;Jeong Dong Hyeok;Oh Yong Kee;Kim Jhin Kee;Kim Ki Hwan;Kim Jeung Kee
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.111-115
    • /
    • 2005
  • We have designed the multi channel detector for the quality assurance of clinical photon beams. The detector was composed of solid phantom inserted by six plane-parallel ionization chambers at different depth. The chamber as a mini plane parallel chamber was made of carbon coated microfilms. In this study the electrical characteristics of the six chambers in the solid phantom were evaluated using 6 MV photon beam. The leakage currents were less than 0.5 pA, reproducibility was less than 0.5$\%$, linearity was less than 0.5$\%$, and dose rate effect was less than 0.7$\%$. In addition the effect of dose variation from other chambers was estimated to maximum 0.8$\%$ approximately. The developed detector can be used for quality determination in output dosimetry or measurement of percentage depth dose approximately for clinical photon beam.

  • PDF

Evaluation of Detection Performance of TlBr Materials for the Development of Electron Beam Quality Assurance Dosimeters (전자선 Quality Assurance 선량계 개발을 위한 TlBr 물질의 검출성능 평가)

  • Yang, Seung-Woo;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.513-518
    • /
    • 2022
  • Electron beam quality assurance (QA) should be done regularly for accurate radiation therapy. However, QA tools used in clinical practice are designed mainly for X-rays. So, a dosimeter for electron beam QA is required. Therefore, in this study, the electron beam detection performance was measured by using a thorium bromide material as an electron beam sensor. In addition, it was evaluated whether it could be applied with an electron beam QA dosimeter. Reproducibility, linearity, and dose rate dependence were evaluated at 6 MeV and 9 MeV energies. As a result of reproducibility, it showed a maximum output change of 0.92% at 6 MeV and 1.15% at 9 MeV. The linearity result evaluation and determination coefficient were presented as 0.9998. As a result of dose rate dependence evaluation, relative standard deviation 0.51% at 6 MeV and relative standard deviation 1.07% at 9 MeV were presented. The manufactured TlBr sensor shows the ability to detect radiation that meets the criteria for evaluation of reproducibility, linearity, and dose rate dependence. These results mean that the TlBr dosimeter is applicable as an electron beam QA dosimeter.

Estimation of Jaw and MLC Transmission Factor Obtained by the Auto-modeling Process in the Pinnacle3 Treatment Planning System (피나클치료계획시스템에서 자동모델화과정으로 얻은 Jaw와 다엽콜리메이터의 투과 계수 평가)

  • Hwang, Tae-Jin;Kang, Sei-Kwon;Cheong, Kwang-Ho;Park, So-Ah;Lee, Me-Yeon;Kim, Kyoung-Ju;Oh, Do-Hoon;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2009
  • Radiation treatment techniques using photon beam such as three-dimensional conformal radiation therapy (3D-CRT) as well as intensity modulated radiotherapy treatment (IMRT) demand accurate dose calculation in order to increase target coverage and spare healthy tissue. Both jaw collimator and multi-leaf collimators (MLCs) for photon beams have been used to achieve such goals. In the Pinnacle3 treatment planning system (TPS), which we are using in our clinics, a set of model parameters like jaw collimator transmission factor (JTF) and MLC transmission factor (MLCTF) are determined from the measured data because it is using a model-based photon dose algorithm. However, model parameters obtained by this auto-modeling process can be different from those by direct measurement, which can have a dosimetric effect on the dose distribution. In this paper we estimated JTF and MLCTF obtained by the auto-modeling process in the Pinnacle3 TPS. At first, we obtained JTF and MLCTF by direct measurement, which were the ratio of the output at the reference depth under the closed jaw collimator (MLCs for MLCTF) to that at the same depth with the field size $10{\times}10\;cm^2$ in the water phantom. And then JTF and MLCTF were also obtained by auto-modeling process. And we evaluated the dose difference through phantom and patient study in the 3D-CRT plan. For direct measurement, JTF was 0.001966 for 6 MV and 0.002971 for 10 MV, and MLCTF was 0.01657 for 6 MV and 0.01925 for 10 MV. On the other hand, for auto-modeling process, JTF was 0.001983 for 6 MV and 0.010431 for 10 MV, and MLCTF was 0.00188 for 6 MV and 0.00453 for 10 MV. JTF and MLCTF by direct measurement were very different from those by auto-modeling process and even more reasonable considering each beam quality of 6 MV and 10 MV. These different parameters affect the dose in the low-dose region. Since the wrong estimation of JTF and MLCTF can lead some dosimetric error, comparison of direct measurement and auto-modeling of JTF and MLCTF would be helpful during the beam commissioning.

  • PDF

A Study of Dosimetric Characteristics of a Diamond Detector for Small Field Photon Beams (광자선 소조사면에 대한 다이아몬드 검출기의 선량특성에 관한 연구)

  • Loh, John-K.;Park, Sung-Y.;Shin, Dong-O.;Kwon, Soo-I.;Lee, Kil-D.;Kim, Woo-C.;Cho, Young-K.
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.195-203
    • /
    • 1999
  • It is difficult to determine dosimetric characteristics for small field photon beams since such small fields do not achieve complete lateral electronic equilibrium and have steep dose gradients. Dosimetric characteristics of small field 4, 6, and 10 MeV photon beams have been measured in water with a diamond detector and compared to measurements using small volume cylindrical and plane parallel ionization chambers. Percent depth dose (PDD) and beam profiles for 6 and 10 MeV photon beams were measured with diamond detector and cylindrical ion chamber for small fields ranging from $1{\times}1\;to\;4{\times}4cm^2$. Total scatter factors($S_{c,p}$) for 4, 6, and 10 MeV photon beams were measured with diamond detector, cylindrical and plane parallel ion chambers for small fields ranging from $1{\times}1\;to\;4{\times}4cm^2$. The $S_{c,p}$ factors obtained with three detectors for 4, 6, and 10 MeV photon beams agreed well ($\pm1.2%$) for field sizes greater than $2{\times}2,\;2.5{\times}2.5,\;and\;3{\times}3\;cm^2$, respectively. For smaller field sizes, the cylindrical and plane parallel ionization chambers measure a smaller $S_{c,p}$ factor, as a result of the steep dose gradients across their sensitive volumes. The PDD values obtained with diamond detector and cylindrical ionization chamber for 6 and 10MeV photon beams agreed well ($\pm1.5%$) for field sizes greater than $4{\times}4\;cm^2$. For smaller field sizes, diamond detector produced a depth-dose curve which had a significantly shallower falloff than that obtained from the measurements of relative depth-dose with a cylindrical ionization chamber. For the measurements of beam profiles, a distortion in terms of broadened penumbra was observed with a cylindrical ionization chamber since diamond detector exhibited higher spatial resolution. The diamond detector with small sensitive volume, near water equivalent, and high spatial resolution is suitable detector compared to ionization chambers for the measurements of small field photon beams.

  • PDF

Feasibility Study of the microDiamond Detector for Measurement of Small Field Photon Beam (광자선 소조사면 선량측정을 위한 microDiamond 검출기의 유용성 고찰)

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Ji, Young Hoon;Kim, Kum Bae;Lee, Sang Hoon;Min, Chul Kee;Jo, Gwang Hwan;Shin, Dong Oh;Kim, Seong Hoon;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.255-263
    • /
    • 2014
  • The dosimetry of very small fields is challenging for several reasons including a lack of lateral electronic equilibrium, large dose gradients, and the size of detector in respect to the field size. The objective of this work was to evaluate the suitability of a new commercial synthetic diamond detector, namely, the PTW 60019 microDiamond, for the small field dosimetry in cyberknife photon beams of 6 different collimator size (from 5 mm to 30 mm). Measurements included dose linearity, dose rate dependence, output factors (OF), percentage depth doses (PDD) and off center ratio (OCR). The results were compared to those of pinpoint ionization chamber, diamond detector, microLion liquid Ionization chamber and diode detector. The dose linearity results for the microDiamond detector showed good linearly proportional to dose. The microDiamond detector showed little dose rate dependency throughout the range of 100~600 MU/min, while microLion liquid Ionization chamber showed a significant discrepancy of approximately 5.8%. The OF measured with microDiamond detector agreed within 3.8% with those measured with diode. PDD curves measured with silicon diode and diamond detector agreed well for all the field sizes. In particular, slightly sharper penumbras are obtained by the microDiamond detector, indicating a good spatial resolution. The results obtained confirm that the new PTW 60019 microDiamond detector is suitable candidate for application in small radiation fields dosimetry.