• Title/Summary/Keyword: Output Prediction

Search Result 736, Processing Time 0.027 seconds

Development of Flash Boiling Spray Prediction Model of Multi-hole GDI Injector Using Machine Learning (머신러닝을 이용한 다공형 GDI 인젝터의 플래시 보일링 분무 예측 모델 개발)

  • Chang, Mengzhao;Shin, Dalho;Pham, Quangkhai;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.27 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • The purpose of this study is to use machine learning to build a model capable of predicting the flash boiling spray characteristics. In this study, the flash boiling spray was visualized using Shadowgraph visualization technology, and then the spray image was processed with MATLAB to obtain quantitative data of spray characteristics. The experimental conditions were used as input, and the spray characteristics were used as output to train the machine learning model. For the machine learning model, the XGB (extreme gradient boosting) algorithm was used. Finally, the performance of machine learning model was evaluated using R2 and RMSE (root mean square error). In order to have enough data to train the machine learning model, this study used 12 injectors with different design parameters, and set various fuel temperatures and ambient pressures, resulting in about 12,000 data. By comparing the performance of the model with different amounts of training data, it was found that the number of training data must reach at least 7,000 before the model can show optimal performance. The model showed different prediction performances for different spray characteristics. Compared with the upstream spray angle and the downstream spray angle, the model had the best prediction performance for the spray tip penetration. In addition, the prediction performance of the model showed a relatively poor trend in the initial stage of injection and the final stage of injection. The model performance is expired to be further enhanced by optimizing the hyper-parameters input into the model.

Measurement and Prediction of Spray Targeting Points according to Injector Parameter and Injection Condition (인젝터 설계변수 및 분사조건에 따른 분무타겟팅 지점의 측정 및 예측)

  • Mengzhao Chang;Bo Zhou;Suhan Park
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • In the cylinder of gasoline direct injection engines, the spray targeting from injectors is of great significance for fuel consumption and pollutant emissions. The automotive industry is putting a lot of effort into improving injector targeting accuracy. To improve the targeting accuracy of injectors, it is necessary to develop models that can predict the spray targeting positions. When developing spray targeting models, the most used technique is computational fluid dynamics (CFD). Recently, due to the superiority of machine learning in prediction accuracy, the application of machine learning in this field is also receiving constant attention. The purpose of this study is to build a machine learning model that can accurately predict spray targeting based on the design parameters of injectors. To achieve this goal, this study firstly used laser sheet beam visualization equipment to obtain many spray cross-sectional images of injectors with different parameters at different injection pressures and measurement planes. The spray images were processed by MATLAB code to get the targeting coordinates of sprays. A total of four models were used for the prediction of spray targeting coordinates, namely ANN, LSTM, Conv1D and Conv1D & LSTM. Features fed into the machine learning model include injector design parameters, injection conditions, and measurement planes. Labels to be output from the model are spray targeting coordinates. In addition, the spray data of 7 injectors were used for model training, and the spray data of the remaining one injector were used for model performance verification. Finally, the prediction performance of the model was evaluated by R2 and RMSE. It is found that the Conv1D&LSTM model has the highest accuracy in predicting the spray targeting coordinates, which can reach 98%. In addition, the prediction bias of the model becomes larger as the distance from the injector tip increases.

Prediction of Monthly Transition of the Composition Stock Price Index Using Error Back-propagation Method (신경회로망을 이용한 종합주가지수의 변화율 예측)

  • Roh, Jong-Lae;Lee, Jong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.896-899
    • /
    • 1991
  • This paper presents the neural network method to predict the Korea composition stock price index. The error back-propagation method is used to train the multi-layer perceptron network. Ten of the various economic indices of the past 7 Nears are used as train data and the monthly transition of the composition stock price index is represented by five output neurons. Test results of this method using the data of the last 18 months are very encouraging.

  • PDF

Adaptive Parameter Estimation for Noisy ARMA Process (잡음 ARMA 프로세스의 적응 매개변수추정)

  • 김석주;이기철;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.4
    • /
    • pp.380-385
    • /
    • 1990
  • This Paper presents a general algorithm for the parameter estimation of an antoregressive moving average process observed in additive white noise. The algorithm is based on the Gauss-Newton recursive prediction error method. For the parameter estimation, the output measurement is modelled as an innovation process using the spectral factorization, so that noise free RPE ARMA estimation can be used. Using apriori known properties leads to algorithm with smaller computation and better accuracy be the parsimony principle. Computer simulation examples show the effectiveness of the proposed algorithm.

Predicting the 2-dimensional airfoil by using machine learning methods

  • Thinakaran, K.;Rajasekar, R.;Santhi, K.;Nalini, M.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.291-304
    • /
    • 2020
  • In this paper, we develop models to design the airfoil using Multilayer Feed-forward Artificial Neural Network (MFANN) and Support Vector Regression model (SVR). The aerodynamic coefficients corresponding to series of airfoil are stored in a database along with the airfoil coordinates. A neural network is created with aerodynamic coefficient as input to produce the airfoil coordinates as output. The performance of the models have been evaluated. The results show that the SVR model yields the lowest prediction error.

Design of Real-Time Adaptive Lattice Predictor Using (DSP를 이용한 실시간 적응격자 예측기 설계)

  • 김성환;홍기룡;홍완희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.119-124
    • /
    • 1988
  • Real-time adaptive lattice predictor was implemented on the TMS32020 DSP chip for digital signal processing. The implemented system was composed of Input-Output units and centrla processing-control unit and its supporting assembly soft ware. The performance of hardware realization was verified by comparing input signal and one-step prediction signal which are calcualted by the real-time adaptive lattice predictor. As a result, for 4 stage lattice structure, the maximum running frequency was obtained as 6.41 KHz in this experiment.

  • PDF

Trouble prediction of Thyristor Rectifiers by the method of heat distribution survey (열분포측정에 의한 정류회로 고장예측)

  • Park, Ho-Cheul
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.818-820
    • /
    • 1993
  • In the three phase full-wave thyristor rectifier, heat radiation concentrated at a few thyristor(s), while equipment's output is normal. That is very important on the predictive maintenance or checking including replacement of parts(or modules). Therefore, this report explains the method of effective diagnosis and the reason that firing control modules have to be adjusted accuratly on each phase.

  • PDF

Estimation of Representative Area-Level Concentrations of Particulate Matter(PM10) in Seoul, Korea (미세먼지(PM10)의 지역적 대푯값 산정 방법에 관한 연구 - 서울특별시를 대상으로)

  • SONG, In-Sang;KIM, Sun-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.118-129
    • /
    • 2016
  • Many epidemiological studies, relying on administrative air pollution monitoring data, have reported the association between particulate matter ($PM_{10}$) air pollution and human health. These monitoring data were collected at a limited number of fixed sites, whereas government-generated health data are aggregated at the area level. To link these two data types for assessing health effects, it is necessary to estimate area-level concentrations of $PM_{10}$. In this study, we estimated district (Gu)-level $PM_{10}$ concentrations using a previously developed pointwise exposure prediction model for $PM_{10}$ and three types of point locations in Seoul, Korea. These points included 16,230 centroids of the largest census output residential areas, 422 community service centers, and 610 centroids on the 1km grid. After creating three types of points, we predicted $PM_{10}$ annual average concentrations at all locations and calculated Gu averages of predicted $PM_{10}$ concentrations as representative Gu-estimates. Then, we compared estimates to each other and to measurements. Prediction-based Gu-level estimates showed higher correlations with measurement-based estimates as prediction locations became more population representative ($R^2=0.06-0.59$). Among the three estimates, grid-based estimates gave lowest correlations compared to the other two(0.35-0.47). This study provides an approach for estimating area-level air pollution concentrations and assesses air pollution health effects using national-scale administrative health data.

Application of recurrent neural network for inflow prediction into multi-purpose dam basin (다목적댐 유입량 예측을 위한 Recurrent Neural Network 모형의 적용 및 평가)

  • Park, Myung Ky;Yoon, Yung Suk;Lee, Hyun Ho;Kim, Ju Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1217-1227
    • /
    • 2018
  • This paper aims to evaluate the applicability of dam inflow prediction model using recurrent neural network theory. To achieve this goal, the Artificial Neural Network (ANN) model and the Elman Recurrent Neural Network(RNN) model were applied to hydro-meteorological data sets for the Soyanggang dam and the Chungju dam basin during dam operation period. For the model training, inflow, rainfall, temperature, sunshine duration, wind speed were used as input data and daily inflow of dam for 10 days were used for output data. The verification was carried out through dam inflow prediction between July, 2016 and June, 2018. The results showed that there was no significant difference in prediction performance between ANN model and the Elman RNN model in the Soyanggang dam basin but the prediction results of the Elman RNN model are comparatively superior to those of the ANN model in the Chungju dam basin. Consequently, the Elman RNN prediction performance is expected to be similar to or better than the ANN model. The prediction performance of Elman RNN was notable during the low dam inflow period. The performance of the multiple hidden layer structure of Elman RNN looks more effective in prediction than that of a single hidden layer structure.