• Title/Summary/Keyword: Output Prediction

Search Result 739, Processing Time 0.024 seconds

Prediction Acidity Constant of Various Benzoic Acids and Phenols in Water Using Linear and Nonlinear QSPR Models

  • Habibi Yangjeh, Aziz;Danandeh Jenagharad, Mohammad;Nooshyar, Mahdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.2007-2016
    • /
    • 2005
  • An artificial neural network (ANN) is successfully presented for prediction acidity constant (pKa) of various benzoic acids and phenols with diverse chemical structures using a nonlinear quantitative structure-property relationship. A three-layered feed forward ANN with back-propagation of error was generated using six molecular descriptors appearing in the multi-parameter linear regression (MLR) model. The polarizability term $(\pi_1)$, most positive charge of acidic hydrogen atom $(q^+)$, molecular weight (MW), most negative charge of the acidic oxygen atom $(q^-)$, the hydrogen-bond accepting ability $(\epsilon_B)$ and partial charge weighted topological electronic (PCWTE) descriptors are inputs and its output is pKa. It was found that properly selected and trained neural network with 205 compounds could fairly represent dependence of the acidity constant on molecular descriptors. For evaluation of the predictive power of the generated ANN, an optimized network was applied for prediction pKa values of 37 compounds in the prediction set, which were not used in the optimization procedure. Squared correlation coefficient $(R^2)$ and root mean square error (RMSE) of 0.9147 and 0.9388 for prediction set by the MLR model should be compared with the values of 0.9939 and 0.2575 by the ANN model. These improvements are due to the fact that acidity constant of benzoic acids and phenols in water shows nonlinear correlations with the molecular descriptors.

Breast Cytology Diagnosis using a Hybrid Case-based Reasoning and Genetic Algorithms Approach

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.389-398
    • /
    • 2007
  • Case-based reasoning (CBR) is one of the most popular prediction techniques for medical diagnosis because it is easy to apply, has no possibility of overfitting, and provides a good explanation for the output. However, it has a critical limitation - its prediction performance is generally lower than other artificial intelligence techniques like artificial neural networks (ANNs). In order to obtain accurate results from CBR, effective retrieval and matching of useful prior cases for the problem is essential, but it is still a controversial issue to design a good matching and retrieval mechanism for CBR systems. In this study, we propose a novel approach to enhance the prediction performance of CBR. Our suggestion is the simultaneous optimization of feature weights, instance selection, and the number of neighbors that combine using genetic algorithms (GAs). Our model improves the prediction performance in three ways - (1) measuring similarity between cases more accurately by considering relative importance of each feature, (2) eliminating redundant or erroneous reference cases, and (3) combining several similar cases represent significant patterns. To validate the usefulness of our model, this study applied it to a real-world case for evaluating cytological features derived directly from a digital scan of breast fine needle aspirate (FNA) slides. Experimental results showed that the prediction accuracy of conventional CBR may be improved significantly by using our model. We also found that our proposed model outperformed all the other optimized models for CBR using GA.

  • PDF

Application of Artificial Neural Network to the Prediction of Pollutant Concentration in Road Tunnels (인공신경망을 이용한 도로터널 오염물질 농도 예측)

  • Lee, Duck-June;Yoo, Yong-Ho;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.434-443
    • /
    • 2003
  • In this study, it was purposed to develop the new method for the prediction of pollutant concentration in road tunnels. The new method was the use of artificial neural network with the back-propagation algorithm which can model the non-linear system of tunnel environment. This network system was separated into two parts as the visibility and the CO concentration. For this study, data was collected from two highway road tunnels on Yeongdong Expressway. The tunnels have two lanes with one-way direction and adopt the longitudinal ventilation system. The actually measured data from the tunnels was used to develop the neural network system for the prediction of pollutant concentration. The output results from the newly developed neural network system were analysed and compared with the calculated values by PIARC method. Results showed that the prediction accuracy by the neural network system was approximately five times better than the one by PIARC method. In addition, the system predicted much more accurately at the situation where the drivers have to be stayed for a while in tunnels caused by the low velocity of vehicles.

Application of Fuzzy Logic for Predicting of Mine Fire in Underground Coal Mine

  • Danish, Esmatullah;Onder, Mustafa
    • Safety and Health at Work
    • /
    • v.11 no.3
    • /
    • pp.322-334
    • /
    • 2020
  • Background: Spontaneous combustion of coal is one of the factors which causes direct or indirect gas and dust explosion, mine fire, the release of toxic gases, loss of reserve, and loss of miners' life. To avoid these incidents, the prediction of spontaneous combustion is essential. The safety of miner's in the mining field can be assured if the prediction of a coal fire is carried out at an early stage. Method: Adularya Underground Coal Mine which is fully mechanized with longwall mining method was selected as a case study area. The data collected for 2017, by sensors from ten gas monitoring stations were used for the simulation and prediction of a coal fire. In this study, the fuzzy logic model is used because of the uncertainties, nonlinearity, and imprecise variables in the data. For coal fire prediction, CO, O2, N2, and temperature were used as input variables whereas fire intensity was considered as the output variable.The simulation of the model is carried out using the Mamdani inference system and run by the Fuzzy Logic Toolbox in MATLAB. Results: The results showed that the fuzzy logic system is more reliable in predicting fire intensity with respect to uncertainties and nonlinearities of the data. It also indicates that the 1409 and 610/2B gas station points have a greater chance of causing spontaneous combustion and therefore require a precautional measure. Conclusion: The fuzzy logic model shows higher probability in predicting fire intensity with the simultaneous application of many variables compared with Graham's index.

Development and implementation of statistical prediction procedure for field penetration index using ridge regression with best subset selection (최상부분집합이 고려된 능형회귀를 적용한 현장관입지수에 대한 통계적 예측기법 개발 및 적용)

  • Lee, Hang-Lo;Song, Ki-Il;Kim, Kyoung Yul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.857-870
    • /
    • 2017
  • The use of shield TBM is gradually increasing due to the urbanization of social infrastructures. Reliable estimation of advance rate is very important for accurate construction period and cost. For this purpose, it is required to develop the prediction model of advance rate that can consider the ground properties reasonably. Based on the database collected from field, statistical prediction procedure for field penetration index (FPI) was modularized in this study to calculate penetration rate of shield TBM. As output parameter, FPI was selected and various systems were included in this module such as, procedure of eliminating abnormal dataset, preprocessing of dataset and ridge regression with best subset selection. And it was finally validated by using field dataset.

A new finite element procedure for fatigue life prediction of AL6061 plates under multiaxial loadings

  • Tarar, Wasim;Herman Shen, M.H.;George, Tommy;Cross, Charles
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.571-592
    • /
    • 2010
  • An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial, bending and shear fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In the first part of this study, energy expressions that construct the constitutive law are equated in the form of total strain energy and the distortion energy dissipated in a fatigue cycle. The resulting equation is further evaluated to acquire the equivalent stress per cycle using energy based methodologies. The equivalent stress expressions are developed both for biaxial and multiaxial fatigue loads and are used to predict the number of cycles to failure based on previously developed prediction criterion. The equivalent stress expressions developed in this study are further used in a new finite element procedure to predict the fatigue life for two and three dimensional structures. In the second part of this study, a new Quadrilateral fatigue finite element is developed through integration of constitutive law into minimum potential energy formulation. This new QUAD-4 element is capable of simulating biaxial fatigue problems. The final output of this finite element analysis both using equivalent stress approach and using the new QUAD-4 fatigue element, is in the form of number of cycles to failure for each element on a scale in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure at each location in gas turbine engine structural components. In order to obtain experimental data for comparison, an Al6061-T6 plate is tested using a previously developed vibration based testing framework. The finite element analysis is performed for Al6061-T6 aluminum and the results are compared with experimental results.

Time Series Stock Prices Prediction Based On Fuzzy Model (퍼지 모델에 기초한 시계열 주가 예측)

  • Hwang, Hee-Soo;Oh, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.689-694
    • /
    • 2009
  • In this paper an approach to building fuzzy models for predicting daily and weekly stock prices is presented. Predicting stock prices with traditional time series analysis has proven to be difficult. Fuzzy logic based models have advantage of expressing the input-output relation linguistically, which facilitates the understanding of the system behavior. In building a stock prediction model we bear a burden of selecting most effective indicators for the stock prediction. In this paper information used in traditional candle stick-chart analysis is considered as input variables of our fuzzy models. The fuzzy rules have the premises and the consequents composed of trapezoidal membership functions and nonlinear equations, respectively. DE(Differential Evolution) identifies optimal fuzzy rules through an evolutionary process. The fuzzy models to predict daily and weekly open, high, low, and close prices of KOSPI(KOrea composite Stock Price Index) are built, and their performances are demonstrated.

A new model approach to predict the unloading rock slope displacement behavior based on monitoring data

  • Jiang, Ting;Shen, Zhenzhong;Yang, Meng;Xu, Liqun;Gan, Lei;Cui, Xinbo
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.105-113
    • /
    • 2018
  • To improve the prediction accuracy of the strong-unloading rock slope performance and obtain the range of variation in the slope displacement, a new displacement time-series prediction model is proposed, called the fuzzy information granulation (FIG)-genetic algorithm (GA)-back propagation neural network (BPNN) model. Initially, a displacement time series is selected as the training samples of the prediction model on the basis of an analysis of the causes of the change in the slope behavior. Then, FIG is executed to partition the series and obtain the characteristic parameters of every partition. Furthermore, the later characteristic parameters are predicted by inputting the earlier characteristic parameters into the GA-BPNN model, where a GA is used to optimize the initial weights and thresholds of the BPNN; in the process, the numbers of input layer nodes, hidden layer nodes, and output layer nodes are determined by a trial method. Finally, the prediction model is evaluated by comparing the measured and predicted values. The model is applied to predict the displacement time series of a strong-unloading rock slope in a hydropower station. The engineering case shows that the FIG-GA-BPNN model can obtain more accurate predicted results and has high engineering application value.

Intelligent Prediction System for Diagnosis of Agricultural Photovoltaic Power Generation (영농형 태양광 발전의 진단을 위한 지능형 예측 시스템)

  • Jung, Seol-Ryung;Park, Kyoung-Wook;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.859-866
    • /
    • 2021
  • Agricultural Photovoltaic power generation is a new model that installs solar power generation facilities on top of farmland. Through this, it is possible to increase farm household income by producing crops and electricity at the same time. Recently, various attempts have been made to utilize agricultural solar power generation. Agricultural photovoltaic power generation has a disadvantage in that maintenance is relatively difficult because it is installed on a relatively high structure unlike conventional photovoltaic power generation. To solve these problems, intelligent and efficient operation and diagnostic functions are required. In this paper, we discuss the design and implementation of a prediction and diagnosis system to collect and store the power output of agricultural solar power generation facilities and implement an intelligent prediction model. The proposed system predicts the amount of power generation based on the amount of solar power generation and environmental sensor data, determines whether there is an abnormality in the facility, calculates the aging degree of the facility and provides it to the user.

Predictability of Northern Hemisphere Blocking in the KMA GDAPS during 2016~2017 (기상청 전지구예측시스템 자료에서의 2016~2017년 북반구 블로킹 예측성 분석)

  • Roh, Joon-Woo;Cho, Hyeong-Oh;Son, Seok-Woo;Baek, Hee-Jeong;Boo, Kyung-On;Lee, Jung-Kyung
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.403-414
    • /
    • 2018
  • Predictability of Northern Hemisphere blocking in the Korea Meteorological Administration (KMA) Global Data Assimilation and Prediction System (GDAPS) is evaluated for the period of July 2016 to May 2017. Using the operational model output, blocking is defined by a meridional gradient reversal of 500-hPa geopotential height as Tibaldi-Molteni Index. Its predictability is quantified by computing the critical success index and bias score against ERA-Interim data. It turns out that Northwest Pacific blockings, among others, are reasonably well predicted with a forecast lead time of 2~3 days. The highest prediction skill is found in spring with 3.5 lead days, whereas the lowest prediction skill is observed in autumn with 2.25 lead days. Although further analyses are needed with longer dataset, this result suggests that Northern Hemisphere blocking is not well predicted in the operational weather prediction model beyond a short-term weather prediction limit. In the spring, summer, and autumn periods, there was a tendency to overestimate the Western North Pacific blocking.