• Title/Summary/Keyword: Output Prediction

Search Result 739, Processing Time 0.022 seconds

Short-Term Photovoltaic Power Generation Forecasting Based on Environmental Factors and GA-SVM

  • Wang, Jidong;Ran, Ran;Song, Zhilin;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.64-71
    • /
    • 2017
  • Considering the volatility, intermittent and random of photovoltaic (PV) generation systems, accurate forecasting of PV power output is important for the grid scheduling and energy management. In order to improve the accuracy of short-term power forecasting of PV systems, this paper proposes a prediction model based on environmental factors and support vector machine optimized by genetic algorithm (GA-SVM). In order to improve the prediction accuracy of this model, weather conditions are divided into three types, and the gray correlation coefficient algorithm is used to find out a similar day of the predicted day. To avoid parameters optimization into local optima, this paper uses genetic algorithm to optimize SVM parameters. Example verification shows that the prediction accuracy in three types of weather will remain at between 10% -15% and the short-term PV power forecasting model proposed is effective and promising.

Prediction of lightweight concrete strength by categorized regression, MLR and ANN

  • Tavakkol, S.;Alapour, F.;Kazemian, A.;Hasaninejad, A.;Ghanbari, A.;Ramezanianpour, A.A.
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.151-167
    • /
    • 2013
  • Prediction of concrete properties is an important issue for structural engineers and different methods are developed for this purpose. Most of these methods are based on experimental data and use measured data for parameter estimation. Three typical methods of output estimation are Categorized Linear Regression (CLR), Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN). In this paper a statistical cleansing method based on CLR is introduced. Afterwards, MLR and ANN approaches are also employed to predict the compressive strength of structural lightweight aggregate concrete. The valid input domain is briefly discussed. Finally the results of three prediction methods are compared to determine the most efficient method. The results indicate that despite higher accuracy of ANN, there are some limitations for the method. These limitations include high sensitivity of method to its valid input domain and selection criteria for determining the most efficient network.

Efficient Signature-Driven Self-Test for Differential Mixed-Signal Circuits

  • Kim, Byoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.713-718
    • /
    • 2016
  • Predicting precise specifications of differential mixed-signal circuits is a difficult problem, because analytically derived correlation between process variations and conventional specifications exhibits the limited prediction accuracy due to the phase unbalance, for most self-tests. This paper proposes an efficient prediction technique to provide accurate specifications of differential mixed-signal circuits in a system-on-chip (SoC) based on a nonlinear statistical nonlinear regression technique. A spectrally pure sinusoidal signal is applied to a differential DUT, and its output is fed into another differential DUT through a weighting circuitry in the loopback configuration. The weighting circuitry, which is employed from the previous work [3], efficiently produces different weights on the harmonics of the loopback responses, i.e., the signatures. The correlation models, which map the signatures to the conventional specifications, are built based on the statistical nonlinear regression technique, in order to predict accurate nonlinearities of individual DUTs. In production testing, once the efficient signatures are measured, and plugged into the obtained correlation models, the harmonic coefficients of DUTs are readily identified. This work provides a practical test solution to overcome the serious test issue of differential mixed-signal circuits; the low accuracy of analytically derived model is much lower by the errors from the unbalance. Hardware measurement results showed less than 1.0 dB of the prediction error, validating that this approach can be used as production test.

Modeling of Plasma Etch Process using a Radial Basis Function Network (레이디얼 베이시스 함수망을 이용한 플라즈마 식각공정 모델링)

  • Park, Kyoungyoung;Kim, Byungwhan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • A new model of plasma etch process was constructed by using a radial basis function network (RBFN). This technique was applied to an etching of silicon carbide films in a NF$_3$ inductively coupled plasma. Experimental data to train RBFN were systematically collected by means of a 2$^4$ full factorial experiment. Appropriateness of prediction models was tested with test data consisted of 16 experiments not pertaining to the training data. Prediction performance was optimized with variations in three training factors, the number of pattern units, width of radial basis function, and initial weight distribution between the pattern and output layers. The etch responses to model were an etch rate and a surface roughness measured by atomic force microscopy. Optimized models had the root mean-squared errors of 26.1 nm/min and 0.103 nm for the etch rate and surface roughness, respectively. Compared to statistical regression models, RBFN models demonstrated an improvement of more than 20 % and 50 % for the etch rate and surface roughness, respectively. It is therefore expected that RBFN can be effectively used to construct prediction models of plasma processes.

Classification Methods for Automated Prediction of Power Load Patterns (전력 부하 패턴 자동 예측을 위한 분류 기법)

  • Minghao, Piao;Park, Jin-Hyung;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.26-30
    • /
    • 2008
  • Currently an automated methodology based on data mining techniques is presented for the prediction of customer load patterns in long duration load profiles. The proposed our approach consists of three stages: (i) data pre-processing: noise or outlier is removed and the continuous attribute-valued features are transformed to discrete values, (ii) cluster analysis: k-means clustering is used to create load pattern classes and the representative load profiles for each class and (iii) classification: we evaluated several supervised learning methods in order to select a suitable prediction method. According to the proposed methodology, power load measured from AMR (automatic meter reading) system, as well as customer indexes, were used as inputs for clustering. The output of clustering was the classification of representative load profiles (or classes). In order to evaluate the result of forecasting load patterns, the several classification methods were applied on a set of high voltage customers of the Korea power system and derived class labels from clustering and other features are used as input to produce classifiers. Lastly, the result of our experiments was presented.

  • PDF

A Study on the Prediction of Optimized Injection Molding Condition using Artificial Neural Network (ANN) (인공신경망을 활용한 최적 사출성형조건 예측에 관한 연구)

  • Yang, D.C.;Lee, J.H.;Yoon, K.H.;Kim, J.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.218-228
    • /
    • 2020
  • The prediction of final mass and optimized process conditions of injection molded products using Artificial Neural Network (ANN) were demonstrated. The ANN was modeled with 10 input parameters and one output parameter (mass). The input parameters, i.e.; melt temperature, mold temperature, injection speed, packing pressure, packing time, cooling time, back pressure, plastification speed, V/P switchover, and suck back were selected. To generate training data for the ANN model, 77 experiments based on the combination of orthogonal sampling and random sampling were performed. The collected training data were normalized to eliminate scale differences between factors to improve the prediction performance of the ANN model. Grid search and random search method were used to find the optimized hyper-parameter of the ANN model. After the training of ANN model, optimized process conditions that satisfied the target mass of 41.14 g were predicted. The predicted process conditions were verified through actual injection molding experiments. Through the verification, it was found that the average deviation in the optimized conditions was 0.15±0.07 g. This value confirms that our proposed procedure can successfully predict the optimized process conditions for the target mass of injection molded products.

Target Tracking Control of a Quadrotor UAV using Vision Sensor (비전 센서를 이용한 쿼드로터형 무인비행체의 목표 추적 제어)

  • Yoo, Min-Goo;Hong, Sung-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.118-128
    • /
    • 2012
  • The goal of this paper is to design the target tracking controller for a quadrotor micro UAV using a vision sensor. First of all, the mathematical model of the quadrotor was estimated through the Prediction Error Method(PEM) using experimental input/output flight data, and then the estimated model was validated via the comparison with new experimental flight data. Next, the target tracking controller was designed using LQR(Linear Quadratic Regulator) method based on the estimated model. The relative distance between an object and the quadrotor was obtained by a vision sensor, and the altitude was obtained by a ultra sonic sensor. Finally, the performance of the designed target tracking controller was evaluated through flight tests.

Rapid prediction of long-term deflections in composite frames

  • Pendharkar, Umesh;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.547-563
    • /
    • 2015
  • Deflection in a beam of a composite frame is a serviceability design criterion. This paper presents a methodology for rapid prediction of long-term mid-span deflections of beams in composite frames subjected to service load. Neural networks have been developed to predict the inelastic mid-span deflections in beams of frames (typically for 20 years, considering cracking, and time effects, i.e., creep and shrinkage in concrete) from the elastic moments and elastic mid-span deflections (neglecting cracking, and time effects). These models can be used for frames with any number of bays and stories. The training, validating, and testing data sets for the neural networks are generated using a hybrid analytical-numerical procedure of analysis. Multilayered feed-forward networks have been developed using sigmoid function as an activation function and the back propagation-learning algorithm for training. The proposed neural networks are validated for an example frame of different number of spans and stories and the errors are shown to be small. Sensitivity studies are carried out using the developed neural networks. These studies show the influence of variations of input parameters on the output parameter. The neural networks can be used in every day design as they enable rapid prediction of inelastic mid-span deflections with reasonable accuracy for practical purposes and require computational effort which is a fraction of that required for the available methods.

Prediction of Sunspot Number Time Series using the Parallel-Structure Fuzzy Systems (병렬구조 퍼지시스템을 이용한 태양흑점 시계열 데이터의 예측)

  • Kim Min-Soo;Chung Chan-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.390-395
    • /
    • 2005
  • Sunspots are dark areas that grow and decay on the lowest level of the sun that is visible from the Earth. Shot-term predictions of solar activity are essential to help plan missions and to design satellites that will survive for their useful lifetimes. This paper presents a parallel-structure fuzzy system(PSFS) for prediction of sunspot number time series. The PSFS consists of a multiple number of component fuzzy systems connected in parallel. Each component fuzzy system in the PSFS predicts future data independently based on its past time series data with different embedding dimension and time delay. An embedding dimension determines the number of inputs of each component fuzzy system and a time delay decides the interval of inputs of the time series. According to the embedding dimension and the time delay, the component fuzzy system takes various input-output pairs. The PSFS determines the final predicted value as an average of all the outputs of the component fuzzy systems in order to reduce error accumulation effect.

Prediction of strength development of fly ash and silica fume ternary composite concrete using artificial neural network (인공신경망을 이용한 플라이애시 및 실리카 흄 복합 콘크리트의 압축강도 예측)

  • Fan, Wei-Jie;Choi, Young-Ji;Wang, Xiao-Yong
    • Journal of Industrial Technology
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Fly ash and silica fume belong to industry by-products that can be used to produce concrete. This study shows the model of a neural network to evaluate the strength development of blended concrete containing fly ash and silica fume. The neural network model has four input parameters, such as fly ash replacement content, silica fume replacement content, water/binder ratio, and ages. Strength is the output variable of neural network. Based on the backpropagation algorithm, the values of elements in the hidden layer of neural network are determined. The number of neurons in the hidden layer is confirmed based on trial calculations. We find (1) neural network can give a reasonable evaluation of the strength development of composite concrete. Neural network can reflect the improvement of strength due to silica fume additions and can consider the reductions of strength as water/binder increases. (2) When the number of neurons in the hidden layer is five, the prediction results show more accuracy than four neurons in the hidden layer. Moreover, five neurons in the hidden layer can reproduce the strength crossover between fly ash concrete and plain concrete. Summarily, the neural network-based model is valuable for design sustainable composite concrete containing silica fume and fly ash.