In this study, we introduce a new design methodology of a granular-oriented self-organizing polynomial neural networks (GoSOPNNs) that is based on multi-layer perceptron with Context-based Polynomial Neurons (CPNs) or Polynomial Neurons (PNs). In contrast to the typical architectures encountered in polynomial neural networks (PNN), our main objective is to develop a methodological design strategy of GoSOPNNs as follows : (a) The 1st layer of the proposed network consists of Context-based Polynomial Neuron (CPN). In here, CPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Context-based Fuzzy C-Means (C-FCM) clustering method. The context-based clustering supporting the design of information granules is completed in the space of the input data while the build of the clusters is guided by a collection of some predefined fuzzy sets (so-called contexts) defined in the output space. (b) The proposed design procedure being applied at each layer of GoSOPNN leads to the selection of preferred nodes of the network (CPNs or PNs) whose local characteristics (such as the number of contexts, the number of clusters, a collection of the specific subset of input variables, and the order of the polynomial) can be easily adjusted. These options contribute to the flexibility as well as simplicity and compactness of the resulting architecture of the network. For the evaluation of performance of the proposed GoSOPNN network, we describe a detailed characteristic of the proposed model using a well-known learning machine data(Automobile Miles Per Gallon Data, Boston Housing Data, Medical Image System Data).
본 논문에서는 음성인식의 전처리 단계로서 음성 영역과 비음성 영역 사이의 경계를 검출하는 음성경계 추출에 대하여 기술한다. 본 논문에서는 음성경계 추출을 위해 두 가지의 특징벡터를 사용한다. 첫 번째는 백색잡음(white noise)에 강건한 시간 영역의 정보인 정규화된 RMS이고, 두 번째는 주파수 영역의 정보인 정규화된 멜주파수 대역 최대 에너지(met-frequency band maximum energy)이다. 본 논문에서 사용하는 음성경계 추출 알고리즘은 학습을 통해 규칙을 생성하고 음성의 시간 정보를 적용하기 위해 순환노드를 추가한 순환 퍼지연상기억장치이다. 퍼지부의 가중치 학습은 헤비안 학습 방법을 사용하고, 순환부의 가중치 학습을 위해서는 오류 역전파(error back-propagation) 알고리즘을 사용한다. 실험에서는 KAIST에서 제공한 연령과 성별로 구분된 음성 자료를 사용하였다.
본 논문에서는 에러 역전파 알고리듬에 기반한 다층 퍼셉트론의 학습 속도를 개선하기 위해 선택적 주의 학습방식을 제안한다. 제안된 방식은 학습 과정에서 세 가지 선택적 주의 기준을 적용하여 학습 데이터베이스 내의 일부 데이터만을 입력 패턴으로 사용하거나 주어진 입력 패턴에 대해 신경회로망내의 특정 영역만 선택적으로 학습이 이루어지도록 한다. 이러한 선택적 주의 기준은 다층 퍼셉트론의 출력층에서 계산된 평균 자승 에러와 은닉층의 각 노드에서 획득된 클래스 의존적인 적합도(relevance)를 이용하여 설정된다. 학습 속도의 개선은 학습 반복 횟수 당 계산량을 줄임으로써 이루어진다. 본 논문에서는 고립 단어 인식시스템에서의 화자 적응 문제에 대해 제안한 선택적 주의 학습방법을 적용하여 그 유효성을 알아보았다. 실험 결과로부터 제안한 선택적 주의 기법이 학습 속도를 평균 60%이상 개선시킬 수 있음을 확인하였다
다층퍼셉트론이 충분한 중간층 노드 수를 지니면 임의의 함수를 근사시킬 수 있다는 이론적 연구결과에 기초하여, 다층퍼셉트론을 실제 문제에 응용하는 경우에 일반적으로 입력층, 중간층, 출력층으로 이루어진 3층 구조의 다층퍼셉트론을 사용한다. 그렇지만, 이러한 구조의 다층퍼셉트론은 입력벡터가 여러 가지 성질로 이루어진 복잡한 문제의 경우 좋은 일반화 성능을 보이지 않는다. 이 논문에서는 입력 벡터가 여러 가지 정보를 지닌 데이터들로 구성되어 있는 문제인 경우에 계층적 구조를 지닌 다층퍼셉트론의 구성으로 성능을 향상시키는 방법을 제안한다. 즉, 입력데이터를 섭-벡터로 구분한 후 섭-벡터별로 다층퍼셉트론을 적용시키며, 이 섭-벡터별로 적용된 하위층 다층퍼셉트론으로부터 인식 결과를 받아서 최종 결정을 하는 상위 다층퍼셉트론을 구현한다. 제안한 방법의 효용성은 단백질의 구조를 예측하는 문제를 통하여 확인한다.
직접 구동용 브러시 없는 직류전동기(BRUSHLESS direct drive motor : BLDD motor)의 강인한 위치제어를 위해 신경망을 사용하여 접근하는 새로운 제어방식이 소개된다. 전향 신경망이 추가된 선형 2차 제어기는 AC서보의 객체지향 방법을 사용함으로서 대략적으로 선형화 되어지는 강인한 BLDD 모터 시스템을 얻기 위해 사용된다. 구동 상태의 온-라인 위상에서 학습되는 이 신경망은 전향신호와 오차 역 전파법(Back-Propagation Method)에 의해 구성된다. 총 노드의 수가 8개이기 때문에 이 시스템은 일반적인 마이크로 프로세서에 의해 쉽게 실현될 수 있다. 일반적인 작동중, 입출력 응답은 표본화되어지고 가중치는 매개변수 또는 부하 토크의 능한 변이를 적용하기 위해 각 표본주기에서 오차 역 전파법에 의해 학습된다. 그리고, 상태공간에서 시스템 분석은 상태 궤환 이득을 얻기 위해 체계적으로 실행했다. 또한, 강인성은 전반적인 시스템응답에 영향력을 주지 않고 얻어진다.
본 논문에서는 입출력간의 연관관계가 트리구조로 표현되는 DTG에 의한 고속병렬다치논리회로를 설계하는 알고리즘을 제안하였다. 본 논문에서는 Nakajima 등에 의해 제안된 알고리즘의 문제점을 도출한 후, 최적화된 분할연산회로설계를 위하여 트리구조에 기초를 둔 수학적인 해석의 개념을 소개한다. 본 논문에서 제안한 알고리즘은 Nakajima 등에 의해 제안된 알고리즘으로는 설계가 가능하지 않았던 임의의 절점을 갖는 DTG에 대해서도 회로를 설계할 수 있다는 장점이 있다. Nakajima 등에 의해 제안된 알고리즘과 본 논문에서 제한한 알고리즘을 회로설계의 관점에서 비교하여 본 논문의 알고리즘이 모든 경우의 DTG에서 보다 최적화 설계를 할 수 있음을 증명하였다. 그리고 예제를 통해 본 논문에서 제안한 알고리즘의 유용성을 증명해 보였다.
본 논문에서는 고차 MIMO 시스템을 위한 저 복잡도의 병렬 구형 검출 알고리즘을 제안하였다. 제안된 알고리즘에서는 정적 가지치기와 가변 가능한 다수의 노드연산기에 의한 동적 가지치기 기법을 통해서 종래의 Fixed-complexity sphere decoder(FSD) 알고리즘 대비 더 낮은 복잡도를 갖게 되며, quasi-maximum likelihood 검출 성능을 보인다. 알고리즘과 함께 제안된 노드연산기 또한, 기존 구형검출기의 순차적 연산 구조를 갖는 노드 연산을 고정된 복잡도를 갖도록 제안하여 하드웨어 구현의 용이성을 제공한다. 16QAM 복조를 하는 고차 MIMO 무선통신의 몬테카를로 모의실험을 통해서, 종래의 저 복잡도를 갖는 FSD 알고리즘 대비, 제안된 알고리즘이 평균적으로 단 6.3%의 검출 시간이 증가되면서 평균 55% 탐색노드가 감소하여 연산 복잡도가 낮아지는 것을 보여주었다.
본 논문은 OFDM(Orthogonal Frequency Division Multiplexing; 직교 주파수 분할 다중)또는 MIMO(Multiple-input Multiple-output; 다중안테나) 시스템과 같이 여러개의 부채널이 존재하는 노드들로 구성된 다중 홉 중계 네트워크에서, 부채널할당 및 전력할당의 동시 최적화를 위한 통합적 접근방법을 제시한다. 다수의 부채널이 존재하는 경우 중계기는 전력할당외에도 첫 번째 홉과 두 번째 홉간의 부채널 matching을 통해 성능을 최적화 할 수 있게 된다. 그러나 두 홉간의 부채널 matching문제는 복잡한 조합론적 문제이므로 부채널할당과 전력할당의 동시 최적화 문제는 일반적으로 그 최적해를 구하기가 아주 어려운 문제로 알려져 있다. 하지만 본 논문에서는 재배열 부등식을 이용하여 복잡한 동시최적화 문제가 많은 경우 효율적으로 풀릴 수 있음을 보이고 다양한 예제롤 통해 제안된 접근법이 아주 유용함을 보인다.
이동 단말기에 다중 안테나를 장착하는 것은 단말기의 크기와 전력 소모 문제로 현실적인 어려움을 안고 있다. 본 논문에서는 셀룰러 네트워크에서 단일 안테나를 가지는 이동 단말기의 전송 용량 증대를 위해, 다중안테나 통신 (MIMO)을 통해서 얻을 수 있는 선형적인 전송 용량 증대를 달성하는 신호 중계 기반 분산 다중 안테나기법을 제안하고 성능을 분석한다. 분산 다중안테나 시스템을 위한 단말 간 신호 중계에 증폭 후 전달 기법(Amplify-and-Forward)을 사용할 경우에 비해 양자화 후 전달 (Quantize-Map-and-Forward) 기법을 사용하는 경우, 처리율 측면에서 보다 우수한 성능을 달성할 수 있음을 실험을 통해서 보인다. 또한, 선형적 전송 용량 증대폭을 보다 향상시키기 위해 양자화 후 전달 중계 방식을 활용하여 다중접속채널을 구성하는 방법을 제안하고, 이러한 다중접속채널 구성이 가능한 조건을 충족시키기 위한 단말기 선택을 가능하게 하는 후보 이동 단말기 수를 분석하였다. 이러한 분산 다중 안테나 통신 기법은 셀룰러 시스템에서 지역적으로 분리된 클러스터들을 서비스하기 때문에 주파수 재사용을 가능하게 하며, 이로 인해 클러스터의 숫자에 비례하는 전체 셀룰러 용량 증대에 기여한다.
본 연구에서는 중학교 국어 교과과정에 있어서 부진아 학생을 위한 부진 영역을 진단을 지원할 수 있는 시스템을 제안하였다. 제안된 시스템을 학교 수업 현장에 적용함으로써 학습부진 학생들의 수준에 맞는 보충${\cdot}$심화학습이 이루어져 학습결손과 학습부진을 최소화하여 교수${\cdot}$학습의 목표를 알성하고 학업성취도를 향상시킬 수 있도록 하였다. 이 시스템에서의 입력은 36가지 변수가 제안된 코딩 기법을 이용하여 시스템을 위하여 학습데이터와 테스트데이터가 인코딩된다. 이 인코딩된 변수의 값들은 시스템의 입력 층의 값이 된다. 은닉 총의 뉴런 수는 학습 데이터를 이용하여 학습한 후 가장 좋은 성능을 보여주는 결과를 이용하여 결정하였다. 출력 층의 뉴런 수는 각 영역에 하나의 뉴런을 할당하여 4개의 뉴런을 사용하였다. 본 시스템을 개발하기 위해 다층 퍼셉트론 구조와 오류 역전파 알고리즘을 사용하였다. 영역진단 지원 시스템을 위해 학습 데이터로써 2,008개를 사용하였고, 테스트를 위하여 380개의 데이터를 사용하여 실험한 후 성능을 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.