• Title/Summary/Keyword: Output Current

Search Result 3,997, Processing Time 0.037 seconds

Modeling of GMR Isolator for Data Transmission Utilizing Spin Valves (스핀밸브를 이용한 데이터 전송용 GMR 아이솔레이터의 모델링)

  • Park, S.;Kim, J.;Jo, S.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.109-113
    • /
    • 2004
  • GMR isolator was modeled using a Wheatstone bridge which is profitable for transmitting rectangular wave digital data, and the output voltage characteristics in relation to the input current were investigated in time domain. GMR isolator modeling was divided into two parts, namely magnetic and electric parts. The flow chart of the modeling was drawn in which measured MR curve of the spin valves were incorporated to obtain the electrical voltage output. For magnetic modeling, 3-dimensional model of planar coil was analyzed by FEM method to obtain the magnetic field strength corresponding to the input current. For electric modeling, resistance, inductance and capacitance of the planar coil were calculated and magnetic field waveform was obtained corresponding to the coil current waveform in time domain. Finally, MR-H curves of spin valves and the magnetic field waveform at the spin valves were composited to obtain the output voltage waveform of the isolator. Even though the amplitude of the coil current waveform was increased by 100%, decreased by 90%, or delayed by 10% of the period compared with the input current, similar transmitted output voltage waveform to the input current waveform was obtained due to hysteretic characteristics of the spin valves at the transmission speed of over 400 Mbit/s.

A study on the Design of Output 380V DC-DC Converter for LVDC Distribution (LVDC 배전을 위한 출력 380V DC-DC 컨버터 설계에 관한 연구)

  • Kim, Phil-Jung;Yang, Seong-Soo;Oh, Byeong-Yun
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.208-215
    • /
    • 2020
  • In this study, the output 380V direct current DC-DC converter for low-voltage direct current(LVDC) distribution was designed in three types, and the voltage and current characteristics of the three types of DC-DC converter were compared and analyzed through simulation. When the converter was configured using a parallel structure with the power metal-oxide semiconductor field-effect transistor and two current suppression insulated-gate bipolar transistors(IGBTs), the time when the output voltage was stabilized at DC 380V was relatively short with 9ms and the range of output current changes was also between 44.8A and 50.2A, indicating that the width of change was much smaller and the effect of current suppression was greater compared to when IGBT was not applied(68~83A). These results suggest that the proposed DC-DC converter for LVDC distribution is likely to be applied to smart grid construction.

Forward-Flyback DC-DC Converter for the Low Voltage and High Current Applications (저전압 대전류용 Forward-Flyback DC-DC 컨버터)

  • Hwang, Sun-Min;Park, Sung-Kyu;Cho, In-Ho;Ahn, Tae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.980-982
    • /
    • 2002
  • In this paper, we report the experimental results of the Forward-flyback DC-DC converter with current doubler and synchronous rectifier. The experimental converter, that has a output voltage 1.8V, output current 25A, maximum power of 45W, switching frequency of 290kHz and input voltage range of 36-75V, has been successfully implemented. As a result, in the entire voltage range the measured full load efficiency was above 82%, and the output voltage was regulated at 1.8V within ${\pm}$3% tolerance.

  • PDF

Parallel Control Algorithm of Thyristor Dual Converter Power System for DC Power Substation of Railway (철도 직류 급전용 싸이리스터 이중 컨버터 전력 시스템의 병렬운전 기법)

  • Kim, Young-Woo;Moon, Dong-Ok;Lee, Chang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A parallel control algorithm of thyristor dual-converter power system for the DC power supply of railway is proposed. The circulating current and current imbalance generated during parallel operation can be limited to control the output voltage of each power system by using the proposed parallel control algorithm. The proposed control algorithm can also eliminate output current sensor to achieve the same output response without additional costs. The validity of the proposed algorithm is verified through simulation and experiment.

A Maximum Power Point Tracking Control for Photovoltaic Array without Voltage Sensor

  • Senjyu Tomonobu;Shirasawa Tomiyuki;Uezato Katsumi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.617-621
    • /
    • 2001
  • This paper presents a maximum power point tracking algorithm for Photovoltaic array using only instantaneous output current information. The conventional Hill climbing method of peak power tracking has a disadvantage of oscillations about the maximum power point. To overcome this problem, we have developed a algorithm, that will estimate the duty ratio corresponding to maximum power operation of solar cell. The estimation of the optimal duty ratio involves, finding the duty ratio at which integral value of output current is maximum. For the estimation, we have used the well know Lagrange's interpolation method. This method can track maximum power point quickly even for changing solar insolations and avoids oscillations after reaching the maximum power point.

  • PDF

Development of Medical Ruby Laser Power Supply using LLC Resonant Converter (LLC 공진형 컨버터를 적용한 의료용 루비 레이저 전원장치 개발)

  • Kim, Dong-Hyun;Jung, Jae-Hun;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.924-928
    • /
    • 2014
  • LLC resonant converter is used to control laser power density in ruby laser power supply. Zero voltage switching(ZVS) is implemented to minimize the switching loss by the LLC resonant converter. Laser output power is investigated and experimented by changing the output current. That current is controled by the charging voltage of capacitor. From those results, we obtained the maximum laser output of 1.94J at the discharge current of 860A and the pulse repetition rate of 1Hz.

Characteristic Experimental of Low Voltage Three phase Diode Rectifier Circuit (저전압 3상 다이오드 정류회로의 특성 실험)

  • Suh K.Y.;Kim Y.M.;Mun S.P.;Kim J.Y.;Lee H.W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.89-92
    • /
    • 2001
  • In conventional three-phase rectifiers, it was necessary to use a transformer to obtain low output voltage. In this paper, we propose a characteristic experimental of three-phase diode rectifiers circuit that achieves low voltage by using a very simple circuit configuration that does not have a transformer and does not need any complex control. We also describe the operation principle of the proposed circuit, and der?ive a theoretical formula for its current waveform. On the basis these theoretical values with experimentally obtained input output current characteristics, current amplification factor, and output voltage characteristics, allowed us to confirm the soundness of our theoretical analyses.

  • PDF

PCS Power Characteristics of PV System by Fuzzy Controller (퍼지제어에 의한 PV시스템의 PCS 출력특성)

  • MOON E. A.;LIM H. W.;BAEK H. L.;CHO G. B.;OH G. K.;LIM Y. S.;KIM P. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.147-150
    • /
    • 2004
  • Maximum power point tracking for PV systems traditionally uses either perturbation and observation method or incremental conductance method. Both methods require modulation of the output voltage and this leads to significant power loss. In this paper, a method, which senses output circuit voltage and short circuit current and use the above two parameters for optimum control with a fuzzy controller, is introduced. The short circuit current of PV cell represents illumination, and the output circuit voltage carry on information about the temperature. PCS(power conditioning system) is controlled not only feed to inverter for stability voltage variation despite of variety external environment, but also operate in order to feeding voltage and current at maximum power point by boost type chopper.

  • PDF

Sinusoidal Input Power factor Improved for Single-Phase Buck AC-DC Type Converter (정현파 입력 역률개선을 위한 단상 강압형 AC-DC 컨버터)

  • Jung, S.H.;Kwon, K.S.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.338-340
    • /
    • 2001
  • Power factor improved for single-phase buck-converter is studied in the paper. To sinusoidal waveform the input current with a near-unity power factor over a wide variety of operating conditions, the output capacitor is operated with voltage reversibility for the supply by arranging the auxiliary diode and power switching device. Then the output voltage is superposed on the input voltage during on time duration of power switching devices in order to minimize the input current distortion caused by the small input voltage when changing the polarity. The tested setup, using two insulated gate bipolar transistors(IGBT) and a microcomputer, is implemented and IGBT are switched with 20[kHz], which is out of the audible band. Moreover, a rigorous state-space analysis is introduced to predict the operation of the rectifier. The simulated results confirm that the input current can be sinusoidal waveform with a near-unity power factor and a satisfactory output voltage regulation can be achieved.

  • PDF

Improvement in Power Factor of Partial Switching Converter for air-conditioner (에어컨용 부분공진 스위칭 컨버터의 역률개선)

  • Suh, K.Y.;Lee, H.W.;Ko, T.E.;Kim, Y.M.;Mun, S.P.;Jang, W.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2662-2664
    • /
    • 1999
  • To improve the current waveform of diode rectifiers, we propose a new operating principle for the voltage diode rectifiers. In the conventional voltage rectifier circuit, relatively large capacitors are used to boost the output voltage, while the proposed circuit uses smaller ones and a small reactor not to boost the output voltage but improve the input current waveform. A circuit design method is shown and confirmed simulation. It explained that compared conventional SPWM inverter with HPWM(Half Pulse-width modulated)Inverter. Proposed HPWM inverter eliminated dead-time by lowering switching loss and holding over-shooting. Output voltage and current of this paper were applied for real air-conditioner.

  • PDF