• Title/Summary/Keyword: Outlier Data

Search Result 415, Processing Time 0.027 seconds

View Selection Algorithm for Texturing Using Depth Maps (Depth 정보를 이용한 Texturing 의 View Selection 알고리즘)

  • Han, Hyeon-Deok;Han, Jong-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1207-1210
    • /
    • 2022
  • 2D 이미지로부터 카메라의 위치 정보를 추정할 수 있는 Structure-from-Motion (SfM) 기술과 dense depth map 을 추정하는 Multi-view Stereo (MVS) 기술을 이용하여 2D 이미지에서 point cloud 와 같은 3D data 를 얻을 수 있다. 3D data 는 VR, AR, 메타버스와 같은 컨텐츠에 사용되기 위한 핵심 요소이다. Point cloud 는 보통 VR, AR, 메타버스와 같은 많은 분야에 이용되기 위해 mesh 형태로 변환된 후 texture 를 입히는 Texturing 과정이 필요하다. 기존의 Texturing 방법에서는 mesh의 face에 사용될 image의 outlier를 제거하기 위해 color 정보만을 이용했다. Color 정보를 이용하는 방법은 mesh 의 face 에 대응되는 image 의 수가 충분히 많고 움직이는 물체에 대한 outlier 에는 효과적이지만 image 의 수가 부족한 경우와 부정확한 카메라 파라미터에 대한 outlier 에는 부족한 성능을 보인다. 본 논문에서는 Texturing 과정의 view selection 에서 depth 정보를 추가로 이용하여 기존 방법의 단점을 보완할 수 있는 방법을 제안한다.

  • PDF

Outlier Detection of Autoregressive Models Using Robust Regression Estimators (로버스트 추정법을 이용한 자기상관회귀모형에서의 특이치 검출)

  • Lee Dong-Hee;Park You-Sung;Kim Kee-Whan
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.305-317
    • /
    • 2006
  • Outliers adversely affect model identification, parameter estimation, and forecast in time series data. In particular, when outliers consist of a patch of additive outliers, the current outlier detection procedures suffer from the masking and swamping effects which make them inefficient. In this paper, we propose new outlier detection procedure based on high breakdown estimators, called as the dual robust filtering. Empirical and simulation studies in the autoregressive model with orders p show that the proposed procedure is effective.

The Correlation Coefficient between the Smallest and Largest Observations in the Weibull Model in the Presence of an Unidentified Outlier (한 개의 불확실(不確實)한 이상점(異常點)을 갖는 와이블분포(分布)에서 최대(最大)값과 최소(最小)값의 상관계수(相關係數))

  • Woo, Jung-Soo;Lee, Chang-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.4
    • /
    • pp.131-136
    • /
    • 1993
  • We shall consider the trends of correlation coefficient between the smallest and largest observations in the Weibull model in the presence of an unidentified outlier, and derive the density functions of order statistics by the permanent theory.

  • PDF

Outlier Detection in Growth Curve Model

  • Shim, Kyu-Bark
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.313-323
    • /
    • 2003
  • For the growth curve model with arbitrary covariance structure, known as unstructured covariance matrix, the problems of detecting outliers are discussed in this paper. In order to detect outliers in the growth curve model, the test statistics using U-distribution is established. After detecting outliers in growth curve model, we test homo and/or hetero-geneous covariance matrices using PSR Quasi-Bayes Criterion. For illustration, one numerical example is discussed, which compares between before and after outlier deleting.

  • PDF

A Score Test for Detection of Outliers in Generalized Linear Models

  • Kahng, Myung-Wook;Kim, Min-Kyung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.129-139
    • /
    • 2004
  • We consider the problem of testing for outliers in generalized linear model. We proceed by first specifying a mean shift outlier model, assuming the suspect set of ourliers is known. Given this model, we discuss standard approaches to obtaining score test for outliers as an alternative to the likelihood ratio test.

  • PDF

Efficient Outlier Detection of the Water Temperature Monitoring Data (수온 관측 자료의 효율적인 이상 자료 탐지)

  • Cho, Hongyeon;Jeong, Shin Taek;Ko, Dong Hui;Son, Kyeong-Pyo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.285-291
    • /
    • 2014
  • The statistical information of the coastal water temperature monitoring data can be biased because of outliers and missing intervals. Though a number of outlier detection methods have been developed, their applications are very limited to the in-situ monitoring data because of the assumptions of the a prior information of the outliers and no-missing condition, and the excessive computational time for some methods. In this study, the practical robust method is developed that can be efficiently and effectively detect the outliers in case of the big-data. This model is composed of these two parts, one part is the construction part of the approximate components of the monitoring data using the robust smoothing and data re-sampling method, and the other part is the main iterative outlier detection part using the detailed components of the data estimated by the approximate components. This model is tested using the two-years 5-minute interval water temperature data in Lake Saemangeum. It can be estimated that the outlier proportion of the data is about 1.6-3.7%. It shows that most of the outliers in the data are detected and removed with satisfaction by the model. In order to effectively detect and remove the outliers, the outlier detection using the long-span smoothing should be applied earlier than that using the short-span smoothing.

Automatic Cleaning Algorithm of Asset Data for Transmission Cable (지중 송전케이블 자산데이터의 자동 정제 알고리즘 개발연구)

  • Hwang, Jae-Sang;Mun, Sung-Duk;Kim, Tae-Joon;Kim, Kang-Sik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.79-84
    • /
    • 2021
  • The fundamental element to be kept for big data analysis, artificial intelligence technologies and asset management system is a data quality, which could directly affect the entire system reliability. For this reason, the momentum of data cleaning works is recently increased and data cleaning methods have been investigating around the world. In the field of electric power, however, asset data cleaning methods have not been fully determined therefore, automatic cleaning algorithm of asset data for transmission cables has been studied in this paper. Cleaning algorithm is composed of missing data treatment and outlier data one. Rule-based and expert opinion based cleaning methods are converged and utilized for these dirty data.

Estimation of irrigation supply from agricultural reservoirs based on reservoir storage data

  • Kang, Hansol;An, Hyunuk;Lee, Kwangya
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.999-1006
    • /
    • 2019
  • Recently, the quantitative management of agricultural water supply, which is the main source for water consumption in Korea, has become more important due to the effective water management organization of the Korean government. In this study, the estimation method for irrigation supply based on agricultural reservoir storage data was improved compared to previous research, in which drought year selection was unclear, and the outlier data for the rainfall-irrigation supply were not eliminated in the regression analysis. In this study, the drought year was selected by the ratio of annual precipitation to mean annual precipitation and the storage rate observed before the start of irrigation. The outlier data for the rainfall-irrigation supply were eliminated by the Grubbs & Beck test. The proposed method was applied to nine agricultural reservoirs for validation. As a result, the ratio of annual precipitation to mean annual precipitation is less than 53% and the storage rate observed before the start of irrigation is less than 55% it was judged to be the drought year. In addition, the drought supply factor, K, was found to be 0.70 on average, showing closer results to the observed reservoir rates. This shows that water management at the real is appling drought year practice. It was shown that the performance of the proposed method was satisfactory with NSE (Nash-Sutcliffe model efficiency coefficient) and R2 (coefficient of determiniation) except for a few cases.

An Outlier Detection Method in Penalized Spline Regression Models (벌점 스플라인 회귀모형에서의 이상치 탐지방법)

  • Seo, Han Son;Song, Ji Eun;Yoon, Min
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.4
    • /
    • pp.687-696
    • /
    • 2013
  • The detection and the examination of outliers are important parts of data analysis because some outliers in the data may have a detrimental effect on statistical analysis. Outlier detection methods have been discussed by many authors. In this article, we propose to apply Hadi and Simonoff's (1993) method to penalized spline a regression model to detect multiple outliers. Simulated data sets and real data sets are used to illustrate and compare the proposed procedure to a penalized spline regression and a robust penalized spline regression.

Outlier detection of main engine data of a ship using ensemble method (앙상블 기법을 이용한 선박 메인엔진 빅데이터의 이상치 탐지)

  • KIM, Dong-Hyun;LEE, Ji-Hwan;LEE, Sang-Bong;JUNG, Bong-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.4
    • /
    • pp.384-394
    • /
    • 2020
  • This paper proposes an outlier detection model based on machine learning that can diagnose the presence or absence of major engine parts through unsupervised learning analysis of main engine big data of a ship. Engine big data of the ship was collected for more than seven months, and expert knowledge and correlation analysis were performed to select features that are closely related to the operation of the main engine. For unsupervised learning analysis, ensemble model wherein many predictive models are strategically combined to increase the model performance, is used for anomaly detection. As a result, the proposed model successfully detected the anomalous engine status from the normal status. To validate our approach, clustering analysis was conducted to find out the different patterns of anomalies the anomalous point. By examining distribution of each cluster, we could successfully find the patterns of anomalies.