Park, Jae-Hong;Seo, Moo-Gyo;Lee, Ki-Baik;Kim, Young-Soo
International Journal of Air-Conditioning and Refrigeration
/
제10권3호
/
pp.129-137
/
2002
In this study, evaporation pressure drop experiments were conducted with two types of plate and shell heat exchangers (P&SHE) using R-22. An experimental refrigerant loop has been established to measure the evaporation pressure drop of R-22 in a vertical P&SHE. The flow channels were formed by stacking three plates having a corrugated channel of a chevron angle of 45 dog. The R-22 flows down in one channel exchanging heat with the hot water flowing up in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality were explored in detail. During the experiment, the quality change between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.15. The present data showed that two types of P&SHE have similar trends. The pressure drop in-creases with the vapor quality for both types of P&SHE. At a higher mass flux, the Pressure drop is higher for the entire range of the vapor quality. Also, the increase in the average heat flux increases the pressure drop. Finally, at a higher system pressure, the pressure drop is found to be slightly lower compared to the lower system pressure.
In this study, evaporation pressure drop experiments were conducted with two types of plate and shell heat exchangers (P&SHE) using R-22. An experimental refrigerant loop has been established to measure the evaporation pressure drop of R-22 in a vertical P&SHE. The flow channels were formed by adding three plates having a corrugated channel of a chevron angle of $45^{\circ}$. The R-22 flows down in one channel exchanging heat with the hot water flowing up in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality were explored in detail. During the experiment, the quality change between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.15. The present data showed that two types of P&SHE have similar trends. The pressure drop increases with the vapor quality for both types of P&SHE. At a higher mass flux, the pressure drop is higher for the entire range of the vapor quality. Also, the increase in the average heat flux increases the pressure drop. Finally, at a higher system pressure, the pressure drop is found to be slightly lower.
We have developed a numerical model to analyze flow dynamics and heat transfer characteristics of the cooling water in a circular rotating magnetron cathode by a moving boundary grid method realized in a commercial multiphysics package, CFD-ACE+. The numerical model is composed of a target, dual mass rotating cathode and cooling water connections. When the inlet and outlet of the cooling water are offset by the same distance from the rotation axis, the temperature at the center is higher by $50^{\circ}C$ at maximum. At 5 mm away from the target surface, the temperature profile showed typical center high characteristic. At heat input of 30 kW, the maximum temperature change of the cooling water hits $6^{\circ}C$ within 0.5 sec under 60 rpm. With a cooling water configuration of center in/edge out, the temperature of the center region of the target gets lowered. Within 100 seconds of plasma operation time, the cooling water temperature keeps getting higher.
A novel design process of a parallel multi-flow type air-cooled condenser of a dual-loop waste heat recovery system with Rankine steam cycles for improving the fuel efficiency of gasoline automobiles has been investigated focusing on reduction of the pressure drop inside the micro-tubes. The low temperature condenser plays a role to dissipate heat from the system by condensing the low temperature loop working fluid sufficiently. However, the refrigerant has low evaporation temperature enough to recover the waste from engine coolant of about $100^{\circ}C$ but has small saturation enthalpy so that excessive mass flow rate of the LT working fluid, e.g., over 150 g/s, causes enormously large pressure drop of the working fluid to maintain the heat dissipation performance of more than 20 kW. This paper has dealt with the scheme to design the low temperature condenser that has reduced pressure drop while ensuring the required thermal performance. The number of pass, the arrangement of the tubes of each pass, and the positions of the inlet and outlet ports on the header are most critical parameters affecting the flow uniformity through all the tubes of the condenser. For the purpose of the performance predictions and the parametric study for the LT condenser, we have developed a 1-dimensional user-friendly performance prediction program that calculates feasibly the phase change of the working fluid in the tubes. An example is presented through the proposed design process and compared with an experiment.
해양온도차발전용 터빈의 효율과 크기를 파악하기 위해 R134a를 작동유체로 하고 출력 5 kW인 반경류형 터빈의 설계가 수행되었다. 터빈입구온도 $25^{\circ}C$, 출구 정압 4.9 bar, 질량유량 1.16 kg/s 로 설정하고 평균유동해석을 수행하여 터빈의 회전수와 주요 치수를 결정하였다. 이들을 바탕으로, 3 차원 터빈 모델을 구축하였으며, 도출된 터빈회전수 12,820 rpm에 대하여 전산유체역학(CFD) 소프트웨어 ANSYS CFX를 이용하여 볼류트와 노즐을 포함하는 터빈 내부 유동장 특성과 효율이 조사되었다. 80%이상의 터빈 효율이 적정 범위 내의 노즐 안내깃 수(10-15 개)에서 제시되었으며, 가장 높은 터빈 효율은 15 개의 안내 깃에서 나타났다.
화력발전용 관류보일러 화로벽관에서의 밀도파 불안정 예측을 목적으로 수치모델을 개발하였다. 시간 도메인에서 1 차원 유한체적법을 적용하여 관내 비정상상태의 유동장을 계산하였으며, 화로벽관의 평행관 연결을 모사하기 위해 헤더의 모델도 포함하였다. 평행관들 가운데 하나의 관에 열 섭동을 부가 후 관 입출구 유량의 변동을 관찰함으로써 밀도파 불안정을 찾았다. 개발된 모델은 문헌의 실험결과와 검증을 거쳐 700MW 보일러 화로벽관에 적용하였다. 그 결과 Takitani 의 실험결과에서는 평행으로 연결된 우회 유량이 줄어들수록 불안정 경계 열량이 상승하는 경향이 있었던 반면, 보일러 화로벽관의 경우에는 평행관 모델링에 크게 영향을 받지 않음을 확인하였다.
Implemented since 2004, TPLC (Total Pollution Load Control) is the most powerful water-quality protection program. Recently, uncertainty of prediction using steady state model increased due to changing water environments, and necessity of a dynamic state model, especially the watershed model, gained importance. For application of watershed model on TPLC, it needs to be feasible to adjust the relationship (mass-balance) between discharged loads estimated by technical guidance, and arrived loads based on observed data at the watershed outlet. However, at HSPF, simulation is performed as a semi-distributed model (lumped model) in a sub-basin. Therefore, if the estimated discharged loads from individual pollution source is directly entered as the point source data into the RCHRES module (without delivery ratio), the pollutant load is not reduced properly until it reaches the outlet of the sub-basin. The hypothetic RCHRES generated using the HSPF BMP Reach Toolkit was applied to solve this problem (although this is not the original application of Reach Toolkit). It was observed that the impact of discharged load according to spatial distribution of pollution sources in a sub-basin, could be expressed by multi-segmentation of the hypothetical RCHRES. Thus, the discharged pollutant load could be adjusted easily by modification of the infiltration rate or characteristics of flow control devices.
The performance characteristics of heat pump system using the new refrigerant subcooling system were investigated. The new heat pump system has the ice storage tank to accumulate the latent heat of the refrigerant during the night-time. The heat is released to subcool the saturated refrigerant liquid at the outlet of a condenser in the daytime. The experimental apparatus is a well-instrumented heat pump which consisted of a refrigerant loop and a coolant loop. The test sections(condenser and evaporator) were made of tube-in-tube heat exchanger with the horizontal copper tube of 12.7[mm] outer diameter and 9.5[mm] inner diameter. The evaporating temperatures ranged from $-5[^{\circ}C]$ to $0[^{\circ}C]$ and the subcooling degrees of the refrigerant varied from $15[^{\circ}C]$ to $25[^{\circ}C]$. The test of the ice storage was carried out at evaporating temperature of $-10[^{\circ}C]$ and the ice storage mode is an ice-on-coil type. The main results were summarized as follows ; The refrigerant mass flow rate and compressor shaft power of the heat pump system were independent of the subcooling degrees. The cooling capacity o the heat pump system increases as the evaporating temperature and subcooling degree increases. The cooling capacity of the heat pump system is about 25 to 30% higher than that of normal heat pump system. The COP of the heat pump system which subcooled the refrigerant liquid at the outlet of the condenser is about 28% higher than that of the normal heat pump system.
연료전지의 박막면은 공기판에 비해 변형이 쉬운 재질로 이루어져 있다. 박막면의 구조적 변형에 따라 채널 단면의 형상이 바뀔 수 있고, 채널의 형상이 변하면 유통특성은 크게 달라질 수 있다. 연료전지의 공기판을 설계할 때에 유동 특성은 성능을 좌우하는 중요한 요소이다. 설계된 공기판의 검증을 위해서는 유동 특성을 파악하고, 유동 특성이 효율적인 성능을 갖기 위한 조건을 만족시키는가를 알아보아야 한다. 본 연구에서는 공기판의 유동 특성을 파악하기 위해 유동해석을 수행하였고, 동일한 조건에서의 실험을 수행하여 해석결과를 검증하였다. 그리고 박막면의 구조적 변형에 의한 유동 특성의 변화를 알아보기 위하여 박막면과 공기판의 구조해석을 수행한 결과를 이용하여 박막면의 구조적 변형을 고려한 유동해석을 수행하여 박막면의 구조적 변형을 고려하지 않은 유동해석의 결과와 그 특성을 비교하였다. 그 결과 상당한 차이가 발생함을 알 수 있었다. 연료전지의 설계를 위해 해석 및 실험시 구조변형이 고려되어야 함을 규명할 수 있다.
Experiments on the performance of refrigeration system using alternatives to R12 are carried out. The condenser and the evaporator are concentric-tube heat exchangers of counter-flow type and the compressor is driven by a variable speed motor. In this study, R134a, R152a, R22/142b(50 : 50 by mass) are adopted as alternatives to R12. Tests are performed by varying the inlet and outlet temperatures of secondary fluids of evaporator and condenser under the condition of constant compressor speed, degree of superheating and degree of subcooling. Results show that R134a has refrigeration capacity close to that of R12 and requires the greatest compressor power compared with that of others. And the system using R152a shows the best performance from the viewpoint of refrigeration capacity, compressor power and coefficient of performance. R22/142b is superior to R12 in the above points.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.