• 제목/요약/키워드: Outlet Mass Flow

검색결과 175건 처리시간 0.03초

Evaporation Pressure Drop Characteristics with R-22 in the Plate and Shell Heat Exchangers

  • Park, Jae-Hong;Seo, Moo-Gyo;Lee, Ki-Baik;Kim, Young-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권3호
    • /
    • pp.129-137
    • /
    • 2002
  • In this study, evaporation pressure drop experiments were conducted with two types of plate and shell heat exchangers (P&SHE) using R-22. An experimental refrigerant loop has been established to measure the evaporation pressure drop of R-22 in a vertical P&SHE. The flow channels were formed by stacking three plates having a corrugated channel of a chevron angle of 45 dog. The R-22 flows down in one channel exchanging heat with the hot water flowing up in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality were explored in detail. During the experiment, the quality change between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.15. The present data showed that two types of P&SHE have similar trends. The pressure drop in-creases with the vapor quality for both types of P&SHE. At a higher mass flux, the Pressure drop is higher for the entire range of the vapor quality. Also, the increase in the average heat flux increases the pressure drop. Finally, at a higher system pressure, the pressure drop is found to be slightly lower compared to the lower system pressure.

판각형 열교환기 내의 R-22 증발 압력강하 특성에 관한 실험적 연구

  • 서무교;박재홍;김영수
    • 설비공학논문집
    • /
    • 제13권10호
    • /
    • pp.930-938
    • /
    • 2001
  • In this study, evaporation pressure drop experiments were conducted with two types of plate and shell heat exchangers (P&SHE) using R-22. An experimental refrigerant loop has been established to measure the evaporation pressure drop of R-22 in a vertical P&SHE. The flow channels were formed by adding three plates having a corrugated channel of a chevron angle of $45^{\circ}$. The R-22 flows down in one channel exchanging heat with the hot water flowing up in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality were explored in detail. During the experiment, the quality change between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.15. The present data showed that two types of P&SHE have similar trends. The pressure drop increases with the vapor quality for both types of P&SHE. At a higher mass flux, the pressure drop is higher for the entire range of the vapor quality. Also, the increase in the average heat flux increases the pressure drop. Finally, at a higher system pressure, the pressure drop is found to be slightly lower.

  • PDF

회전형 마그네트론 음극의 냉각수 유동 및 열전달 해석 (Flow and Heat Transfer Analysis of Cooling Water in a Rotating Magnetron Cathode)

  • 주정훈
    • 한국표면공학회지
    • /
    • 제52권3호
    • /
    • pp.171-179
    • /
    • 2019
  • We have developed a numerical model to analyze flow dynamics and heat transfer characteristics of the cooling water in a circular rotating magnetron cathode by a moving boundary grid method realized in a commercial multiphysics package, CFD-ACE+. The numerical model is composed of a target, dual mass rotating cathode and cooling water connections. When the inlet and outlet of the cooling water are offset by the same distance from the rotation axis, the temperature at the center is higher by $50^{\circ}C$ at maximum. At 5 mm away from the target surface, the temperature profile showed typical center high characteristic. At heat input of 30 kW, the maximum temperature change of the cooling water hits $6^{\circ}C$ within 0.5 sec under 60 rpm. With a cooling water configuration of center in/edge out, the temperature of the center region of the target gets lowered. Within 100 seconds of plasma operation time, the cooling water temperature keeps getting higher.

폐열 회수 시스템용 공랭식 응축기의 압력 손실 저감 설계 (A Design Process for Reduction of Pressure Drop of Air-cooled Condenser for Waste Heat Recovery System)

  • 배석정;허형석;박정상;이홍열;김찬중
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.81-91
    • /
    • 2013
  • A novel design process of a parallel multi-flow type air-cooled condenser of a dual-loop waste heat recovery system with Rankine steam cycles for improving the fuel efficiency of gasoline automobiles has been investigated focusing on reduction of the pressure drop inside the micro-tubes. The low temperature condenser plays a role to dissipate heat from the system by condensing the low temperature loop working fluid sufficiently. However, the refrigerant has low evaporation temperature enough to recover the waste from engine coolant of about $100^{\circ}C$ but has small saturation enthalpy so that excessive mass flow rate of the LT working fluid, e.g., over 150 g/s, causes enormously large pressure drop of the working fluid to maintain the heat dissipation performance of more than 20 kW. This paper has dealt with the scheme to design the low temperature condenser that has reduced pressure drop while ensuring the required thermal performance. The number of pass, the arrangement of the tubes of each pass, and the positions of the inlet and outlet ports on the header are most critical parameters affecting the flow uniformity through all the tubes of the condenser. For the purpose of the performance predictions and the parametric study for the LT condenser, we have developed a 1-dimensional user-friendly performance prediction program that calculates feasibly the phase change of the working fluid in the tubes. An example is presented through the proposed design process and compared with an experiment.

해양온도차발전용 반경류 터빈의 설계 및 해석 (Design and Analysis of a Radial Turbine for Ocean Thermal Energy Conversion)

  • ;이근식
    • 대한기계학회논문집B
    • /
    • 제39권3호
    • /
    • pp.207-214
    • /
    • 2015
  • 해양온도차발전용 터빈의 효율과 크기를 파악하기 위해 R134a를 작동유체로 하고 출력 5 kW인 반경류형 터빈의 설계가 수행되었다. 터빈입구온도 $25^{\circ}C$, 출구 정압 4.9 bar, 질량유량 1.16 kg/s 로 설정하고 평균유동해석을 수행하여 터빈의 회전수와 주요 치수를 결정하였다. 이들을 바탕으로, 3 차원 터빈 모델을 구축하였으며, 도출된 터빈회전수 12,820 rpm에 대하여 전산유체역학(CFD) 소프트웨어 ANSYS CFX를 이용하여 볼류트와 노즐을 포함하는 터빈 내부 유동장 특성과 효율이 조사되었다. 80%이상의 터빈 효율이 적정 범위 내의 노즐 안내깃 수(10-15 개)에서 제시되었으며, 가장 높은 터빈 효율은 15 개의 안내 깃에서 나타났다.

평행관 모델링을 통한 보일러 화로벽관 내 밀도파 불안정의 해석 (Analysis of Density Wave Oscillation in Boiler Furnace Wall Tubes with Parallel Channel Modeling)

  • 김진일;최상민
    • 대한기계학회논문집B
    • /
    • 제37권2호
    • /
    • pp.187-196
    • /
    • 2013
  • 화력발전용 관류보일러 화로벽관에서의 밀도파 불안정 예측을 목적으로 수치모델을 개발하였다. 시간 도메인에서 1 차원 유한체적법을 적용하여 관내 비정상상태의 유동장을 계산하였으며, 화로벽관의 평행관 연결을 모사하기 위해 헤더의 모델도 포함하였다. 평행관들 가운데 하나의 관에 열 섭동을 부가 후 관 입출구 유량의 변동을 관찰함으로써 밀도파 불안정을 찾았다. 개발된 모델은 문헌의 실험결과와 검증을 거쳐 700MW 보일러 화로벽관에 적용하였다. 그 결과 Takitani 의 실험결과에서는 평행으로 연결된 우회 유량이 줄어들수록 불안정 경계 열량이 상승하는 경향이 있었던 반면, 보일러 화로벽관의 경우에는 평행관 모델링에 크게 영향을 받지 않음을 확인하였다.

수질오염총량관리를 위한 유역모형의 유달 과정 재현방안 연구 (Study on Representation of Pollutants Delivery Process using Watershed Model)

  • 황하선;이한필;이성준;안기홍;박지형;김용석
    • 한국물환경학회지
    • /
    • 제32권6호
    • /
    • pp.589-599
    • /
    • 2016
  • Implemented since 2004, TPLC (Total Pollution Load Control) is the most powerful water-quality protection program. Recently, uncertainty of prediction using steady state model increased due to changing water environments, and necessity of a dynamic state model, especially the watershed model, gained importance. For application of watershed model on TPLC, it needs to be feasible to adjust the relationship (mass-balance) between discharged loads estimated by technical guidance, and arrived loads based on observed data at the watershed outlet. However, at HSPF, simulation is performed as a semi-distributed model (lumped model) in a sub-basin. Therefore, if the estimated discharged loads from individual pollution source is directly entered as the point source data into the RCHRES module (without delivery ratio), the pollutant load is not reduced properly until it reaches the outlet of the sub-basin. The hypothetic RCHRES generated using the HSPF BMP Reach Toolkit was applied to solve this problem (although this is not the original application of Reach Toolkit). It was observed that the impact of discharged load according to spatial distribution of pollution sources in a sub-basin, could be expressed by multi-segmentation of the hypothetical RCHRES. Thus, the discharged pollutant load could be adjusted easily by modification of the infiltration rate or characteristics of flow control devices.

냉매 과냉각 시스템을 이용한 열펌프의 성능향상에 관한 연구 (Performance Enhancement of the Heat Pump Using the Refrigerant Subcooling System)

  • 손창효;윤찬일;박승준;이동건;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.106-111
    • /
    • 2001
  • The performance characteristics of heat pump system using the new refrigerant subcooling system were investigated. The new heat pump system has the ice storage tank to accumulate the latent heat of the refrigerant during the night-time. The heat is released to subcool the saturated refrigerant liquid at the outlet of a condenser in the daytime. The experimental apparatus is a well-instrumented heat pump which consisted of a refrigerant loop and a coolant loop. The test sections(condenser and evaporator) were made of tube-in-tube heat exchanger with the horizontal copper tube of 12.7[mm] outer diameter and 9.5[mm] inner diameter. The evaporating temperatures ranged from $-5[^{\circ}C]$ to $0[^{\circ}C]$ and the subcooling degrees of the refrigerant varied from $15[^{\circ}C]$ to $25[^{\circ}C]$. The test of the ice storage was carried out at evaporating temperature of $-10[^{\circ}C]$ and the ice storage mode is an ice-on-coil type. The main results were summarized as follows ; The refrigerant mass flow rate and compressor shaft power of the heat pump system were independent of the subcooling degrees. The cooling capacity o the heat pump system increases as the evaporating temperature and subcooling degree increases. The cooling capacity of the heat pump system is about 25 to 30% higher than that of normal heat pump system. The COP of the heat pump system which subcooled the refrigerant liquid at the outlet of the condenser is about 28% higher than that of the normal heat pump system.

  • PDF

연료전지 공기판의 구조적 변형을 고려한 유동 해석과 실험 (Numerical and Exprimental Study of the Air Plate in a Fuel Cell Considering Structural Deformation)

  • 양지혜;한오현;박정선
    • 한국항공우주학회지
    • /
    • 제32권5호
    • /
    • pp.41-49
    • /
    • 2004
  • 연료전지의 박막면은 공기판에 비해 변형이 쉬운 재질로 이루어져 있다. 박막면의 구조적 변형에 따라 채널 단면의 형상이 바뀔 수 있고, 채널의 형상이 변하면 유통특성은 크게 달라질 수 있다. 연료전지의 공기판을 설계할 때에 유동 특성은 성능을 좌우하는 중요한 요소이다. 설계된 공기판의 검증을 위해서는 유동 특성을 파악하고, 유동 특성이 효율적인 성능을 갖기 위한 조건을 만족시키는가를 알아보아야 한다. 본 연구에서는 공기판의 유동 특성을 파악하기 위해 유동해석을 수행하였고, 동일한 조건에서의 실험을 수행하여 해석결과를 검증하였다. 그리고 박막면의 구조적 변형에 의한 유동 특성의 변화를 알아보기 위하여 박막면과 공기판의 구조해석을 수행한 결과를 이용하여 박막면의 구조적 변형을 고려한 유동해석을 수행하여 박막면의 구조적 변형을 고려하지 않은 유동해석의 결과와 그 특성을 비교하였다. 그 결과 상당한 차이가 발생함을 알 수 있었다. 연료전지의 설계를 위해 해석 및 실험시 구조변형이 고려되어야 함을 규명할 수 있다.

R134a, R152a, R22/142b를 이용한 냉동기의 성능실험 (Performance of Refrigerator Using R134a, R152a and R22/142b)

  • 장영수;신지영;노승탁
    • 설비공학논문집
    • /
    • 제6권1호
    • /
    • pp.39-46
    • /
    • 1994
  • Experiments on the performance of refrigeration system using alternatives to R12 are carried out. The condenser and the evaporator are concentric-tube heat exchangers of counter-flow type and the compressor is driven by a variable speed motor. In this study, R134a, R152a, R22/142b(50 : 50 by mass) are adopted as alternatives to R12. Tests are performed by varying the inlet and outlet temperatures of secondary fluids of evaporator and condenser under the condition of constant compressor speed, degree of superheating and degree of subcooling. Results show that R134a has refrigeration capacity close to that of R12 and requires the greatest compressor power compared with that of others. And the system using R152a shows the best performance from the viewpoint of refrigeration capacity, compressor power and coefficient of performance. R22/142b is superior to R12 in the above points.

  • PDF