• 제목/요약/키워드: Outgrowth

Search Result 181, Processing Time 0.056 seconds

신경성장기전 및 치료제개발

  • 양성일
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.11a
    • /
    • pp.28-33
    • /
    • 1993
  • Regulation of nerve growth factor (NGF)-induced neuronal differentiation by GTPase activating protein(GAP) and its mechanism were investigated in rat pheochromocytoma cell line, PCl2. Overexpression of GAP caused the delay in the onset of neurite outgrowth of PCl2 eel Is in response to NGF. GAP has been known to inhibit p21$\^$ras/, the activated form of which induces neuronal differentiation. Therefore, the activity of p21$\^$ras/ was compared in control cells and cells overexpressing GAP indirectly by measuring the activities of B-Raf and MAP kinase that are known to be positively regulated by p21$\^$ras/. Surprisingly, NGF-induced activities of these two proteins were the same in control eells and GAP-overexpressing cells. Activities of Trk, PLC-r and SMC that act at a site upstream to p21$\^$ras/ in NGF signal transduction pathway were not also affected by GAP overexpression. Interestingly, however, the extent of tyrosine phosphorylation of SNT was found to be remarkably low in cells overexpressing GAP. It has been shown previously that neurotrophins and not mitogens induce SNT tyrosine phosphorylation in PCl2 cells. Thus it is possible that the timing of NGF-induced neuronal differntiation may be in part regulated by SNT and the slower onset of neurite outgrowth in cells overexpressing GAP may be through the inhibition of SNT by GAP.

  • PDF

The Neuroprotective and Neurotrophic Effects of Tremella fuciformis in PC12h Cells

  • Park, Kum-Ju;Lee, Sang-Yun;Kim, Hyun-Su;Yamazaki, Matsumi;Chiba, Kenzo;Ha, Hyo-Cheol
    • Mycobiology
    • /
    • v.35 no.1
    • /
    • pp.11-15
    • /
    • 2007
  • We examined the neuroprotective and neurotrophic effects of Tremella fuciformis. The neurotrophic effects of the hot water extract of T. fuciformis was evaluated by microscopically monitoring its potency to induce neurite outgrowth in PC12h cells. The hot water extract cf T. fuciformis promoted neurite outgrowth in PC12h cells in this study, superior to other natural substances which was reported previously. When cells were treated with the hot water extract of T. fuciformis prior to ${\beta}$-amyloid peptide treatment (active domain of A peptide $35{\sim}35$ treated), toxicity was significantly diminished (p<0.01). These results suggest that T. fuciformis might potentially be used as a precautionary agent in neurodegenerative disease, such as Alzheimer's disease, etc.

Lipocalin-2 Secreted by the Liver Regulates Neuronal Cell Function Through AKT-Dependent Signaling in Hepatic Encephalopathy Mouse Model

  • Danbi Jo;Yoon Seok Jung;Juhyun Song
    • Clinical Nutrition Research
    • /
    • v.12 no.2
    • /
    • pp.154-167
    • /
    • 2023
  • Hepatic encephalopathy (HE) associated with liver failure is accompanied by hyperammonemia, severe inflammation, depression, anxiety, and memory deficits as well as liver injury. Recent studies have focused on the liver-brain-inflammation axis to identify a therapeutic solution for patients with HE. Lipocalin-2 is an inflammation-related glycoprotein that is secreted by various organs and is involved in cellular mechanisms including iron homeostasis, glucose metabolism, cell death, neurite outgrowth, and neurogenesis. In this study, we investigated that the roles of lipocalin-2 both in the brain cortex of mice with HE and in Neuro-2a (N2A) cells. We detected elevated levels of lipocalin-2 both in the plasma and liver in a bile duct ligation mouse model of HE. We confirmed changes in cytokine expression, such as interleukin-1β, cyclooxygenase 2 expression, and iron metabolism related to gene expression through AKT-mediated signaling both in the brain cortex of mice with HE and N2A cells. Our data showed negative effects of hepatic lipocalin-2 on cell survival, iron homeostasis, and neurite outgrowth in N2A cells. Thus, we suggest that regulation of lipocalin-2 in the brain in HE may be a critical therapeutic approach to alleviate neuropathological problems focused on the liver-brain axis.

LP-M, a Novel Butanol-Extracts Isolated from Liriope platyphylla, could Induce the Neuronal Cell Survival and Neuritic Outgrowth in Hippocampus of Mice through Akt/ERK Activation on NGF Signal Pathway (맥문동(Liriope platyphylla)의 새로운 부탄올 추출물인 LP-M이 Akt/ERK NGF receptor signaling pathway를 통해 뇌조직에서 신경세포의 생존과 성장에 미치는 영향에 관한 연구)

  • Nam, So-He;Choi, Sun-Il;Goo, Jun-Seo;Kim, Ji-Eun;Lee, Yoen-Kyung;Hwang, In-Sik;Lee, Hye-Ryun;Lee, Young-Ju;Lee, Hong-Gu;Choi, Young-Whan;Hwang, Dae-Youn
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1234-1243
    • /
    • 2011
  • Liriope platyphylla has been used in oriental medicine as an effective medical plant to improve symptoms of cough, sputum production, neurodegenerative disorders, obesity and diabetes for long time. In order to investigate the effects of novel extracts on nerve growth factors (NGF)-stimulated neuritic outgrowth, the alteration of NGF expression and NGF receptor signaling pathway were detected in neuroblastoma cells and C57BL/6 mice. Of a total of 13 novel extracts, 4 extracts (LP-E, LP-M, LP-M50, LP2E17PJ) showed high viability on MTT assay. Also, all of these extracts induced NGF secretion and NGF mRNA expression in neuroblastoma cells. However, the NGF-induced neuritic outgrowth from PC12 cells was only stimulated by LP-E, LP-M and LP-M50. Furthermore, we selected LP-M as a best candidate, based on method and amounts of extraction, in order to verify its effect in mice. C57BL/6 mice were treated with 50 mg/kg of LP-M for 2 weeks and the effects on NGF regulation were analyzed with various methods. The expression of NGF mRNA was significantly increased in LP-M treated mice compared to vehicle treated mice. Also, the signaling pathway of p75NTR was inhibited in the cortex by LP-M treatment, with no change in the hippocampus of brain. However, the signaling pathway of TrkA was dramatically activated in only hippocampus via LP-M treatment. Therefore, these results suggest that the novel four extracts of L. platyphylla may contribute to the regulation of NGF expression and secretion in neuronal cells. LP-M was especially considered to be an excellent candidate for a neurodegenerative disease-therapeutic drug.

BRI3 associates with SCG10 and attenuates NGF-induced neurite outgrowth in PC12 cells

  • Gong, Yanhua;Wu, Jing;Qiang, Hua;Liu, Ben;Chi, Zhikai;Chen, Tao;Yin, Bin;Peng, Xiaozhong;Yuan, Jiangang
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.287-293
    • /
    • 2008
  • In a yeast two-hybrid screen, we identified the microtubule-destabilizing protein SCG10 as a potential effector protein of $BRI_3$. The association was verified using GST pull-down, Co-IP, and their perinuclear co-localization. The analysis of in vitro microtubule polymerization/depolymerization showed that the binding of $BRI_3$ to SCG10 effectively blocked the ability of SCG10 to induce microtubule disassembly, as determined by turbidimetric assays. In intact PC12 cells, $BRI_3$ exhibited the ability to stabilize the microtubule network and attenuate the microtubule-destabilizing activity of SCG10. Furthermore, co-expression of $BRI_3$ with SCG10 attenuated SCG10-mediated PC12 cell neurite outgrowth induced by NGF. These results identify a novel connection between a neuron-specific BRI protein and the cytoskeletal network, suggesting possible roles of BRI3 in the process of neuronal differentiation.

Chronic Treatment of Fluoxetine Increases Expression of NCAM140 in the Rat Hippocampus (장기간 플루세틴 처리에 의한 흰쥐 해마에서의 NCAM140 유전자 발현의 증가)

  • Choi, Mi Ran;Chai, Young Gyu;Jung, Kyoung Hwa;Baik, Seung Youn;Kim, Seok Hyeon;Roh, Sungwon;Choi, Joonho;Lee, Jun-Seok;Choi, Ihn Geun;Yang, Byung-Hwan
    • Korean Journal of Biological Psychiatry
    • /
    • v.16 no.1
    • /
    • pp.5-14
    • /
    • 2009
  • Objectives : Most of the mechanisms reported for antidepressant drugs are the enhancement of neurite outgrowth and neuronal survival in the rat hippocampus. Neural cell adhesion molecule 140(NCAM140) has been implicated as having a role in cell-cell adhesion, neurite outgrowth, and synaptic plasticity. In this report, we have performed to elucidate a correlation among chronic antidepressant treatments, NCAM140 expression, and activation of phosphorylated cyclicAMP responsive element binding protein(pCREB) which is a downstream molecule of NCAM140-mediated intracellular signaling pathway in the rat hippocampus. Methods : Fluoxetine(10mg/kg) was injected acutely(daily injection for 5days) or chronically(daily injection for 14days) in adult rats. RNA and protein were extracted from the rat hippocampus, respectively. Real-time RT-PCR was performed to analyze the expression pattern of NCAM140 gene and western blot analyses for the activation of the phosphorylation ratio of CREB. Results : Chronic fluoxetine treatments increased NCAM140 expression 1.3 times higher than control in rat hippocampus. pCREB immunoreactivity in the rat hippocampus with chronic fluoxetine treatment was increased 4.0 times higher than that of control. Conclusion : Chronic fluoxetine treatment increased NCAM140 expression and pCREB activity in the rat hippocampus. Our data suggest that NCAM140 and pCREB may play a role in the clinical efficacy of antidepressants promoting the neurite outgrowth and neuronal survival.

  • PDF