• 제목/요약/키워드: Outgrowth

검색결과 179건 처리시간 0.035초

신경성장기전 및 치료제개발

  • 양성일
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1993년도 제1회 추계심포지움 and 제2회 생리분자과학연구센터워크숍
    • /
    • pp.28-33
    • /
    • 1993
  • Regulation of nerve growth factor (NGF)-induced neuronal differentiation by GTPase activating protein(GAP) and its mechanism were investigated in rat pheochromocytoma cell line, PCl2. Overexpression of GAP caused the delay in the onset of neurite outgrowth of PCl2 eel Is in response to NGF. GAP has been known to inhibit p21$\^$ras/, the activated form of which induces neuronal differentiation. Therefore, the activity of p21$\^$ras/ was compared in control cells and cells overexpressing GAP indirectly by measuring the activities of B-Raf and MAP kinase that are known to be positively regulated by p21$\^$ras/. Surprisingly, NGF-induced activities of these two proteins were the same in control eells and GAP-overexpressing cells. Activities of Trk, PLC-r and SMC that act at a site upstream to p21$\^$ras/ in NGF signal transduction pathway were not also affected by GAP overexpression. Interestingly, however, the extent of tyrosine phosphorylation of SNT was found to be remarkably low in cells overexpressing GAP. It has been shown previously that neurotrophins and not mitogens induce SNT tyrosine phosphorylation in PCl2 cells. Thus it is possible that the timing of NGF-induced neuronal differntiation may be in part regulated by SNT and the slower onset of neurite outgrowth in cells overexpressing GAP may be through the inhibition of SNT by GAP.

  • PDF

The Neuroprotective and Neurotrophic Effects of Tremella fuciformis in PC12h Cells

  • Park, Kum-Ju;Lee, Sang-Yun;Kim, Hyun-Su;Yamazaki, Matsumi;Chiba, Kenzo;Ha, Hyo-Cheol
    • Mycobiology
    • /
    • 제35권1호
    • /
    • pp.11-15
    • /
    • 2007
  • We examined the neuroprotective and neurotrophic effects of Tremella fuciformis. The neurotrophic effects of the hot water extract of T. fuciformis was evaluated by microscopically monitoring its potency to induce neurite outgrowth in PC12h cells. The hot water extract cf T. fuciformis promoted neurite outgrowth in PC12h cells in this study, superior to other natural substances which was reported previously. When cells were treated with the hot water extract of T. fuciformis prior to ${\beta}$-amyloid peptide treatment (active domain of A peptide $35{\sim}35$ treated), toxicity was significantly diminished (p<0.01). These results suggest that T. fuciformis might potentially be used as a precautionary agent in neurodegenerative disease, such as Alzheimer's disease, etc.

맥문동(Liriope platyphylla)의 새로운 부탄올 추출물인 LP-M이 Akt/ERK NGF receptor signaling pathway를 통해 뇌조직에서 신경세포의 생존과 성장에 미치는 영향에 관한 연구 (LP-M, a Novel Butanol-Extracts Isolated from Liriope platyphylla, could Induce the Neuronal Cell Survival and Neuritic Outgrowth in Hippocampus of Mice through Akt/ERK Activation on NGF Signal Pathway)

  • 남소희;최선일;구준서;김지은;이연경;황인식;이혜련;이영주;이홍구;최영환;황대연
    • 생명과학회지
    • /
    • 제21권9호
    • /
    • pp.1234-1243
    • /
    • 2011
  • 맥문동(Liriope platyphylla)은 동양의학에서 오래 동안 항염증제, 당뇨 혹은 비만 치료제, 그리고 신경세포활성화 약제로 사용되어 왔다. 본 연구에서는 맥문동으로부터 NGF의 발현을 촉진하는 새로운 물질을 개발하고 이들의 작용기전을 밝히기 위하여 맥문동으로부터 13가지의 새로운 추출물을 확보하고 이들의 기능을 세포주와 마우스 실험을 통해 분석하였다. 그 결과, 상대적으로 세포독성이 낮고 NGF의 분비량이 많은 LP-E, LP-M, LP-M50, LP2E17PJ 등 4가지 추출물을 확보하였다. 또한 이들 중에서 LP2E17PJ를 제외한 3가지 추출물에 의해 분비된 NGF는 PC12세포의 neuritic outgrowth를 촉진하였다. 더불어 추출방법과 추출량의 측면에서 효과적인 LP-M을 C57BL/6 마우스에 2주간 투여하여 뇌조직에서 NGF mRNA의 발현을 확인하였다. LP-M은 오직 피질에서만 두 종류의 receptor 중에서 low affinity receptor를 통한 억제신호를 전달하였으며, 해마에서는 유의적인 변화를 유도하지 못했다. 그러나 high affinity receptor를 통한 신호전달은 해마에서만 활성화 신호를 전달하였고 피질에서는 변화를 유도하지 못했다. 이러한 결과는 맥문동 추출물인 LP-M은 마우스 대뇌의 해마에서 high affinity receptor를 통한 신호전달을 통해 neuritic outgrowth를 촉진함을 확인하였다.

BRI3 associates with SCG10 and attenuates NGF-induced neurite outgrowth in PC12 cells

  • Gong, Yanhua;Wu, Jing;Qiang, Hua;Liu, Ben;Chi, Zhikai;Chen, Tao;Yin, Bin;Peng, Xiaozhong;Yuan, Jiangang
    • BMB Reports
    • /
    • 제41권4호
    • /
    • pp.287-293
    • /
    • 2008
  • In a yeast two-hybrid screen, we identified the microtubule-destabilizing protein SCG10 as a potential effector protein of $BRI_3$. The association was verified using GST pull-down, Co-IP, and their perinuclear co-localization. The analysis of in vitro microtubule polymerization/depolymerization showed that the binding of $BRI_3$ to SCG10 effectively blocked the ability of SCG10 to induce microtubule disassembly, as determined by turbidimetric assays. In intact PC12 cells, $BRI_3$ exhibited the ability to stabilize the microtubule network and attenuate the microtubule-destabilizing activity of SCG10. Furthermore, co-expression of $BRI_3$ with SCG10 attenuated SCG10-mediated PC12 cell neurite outgrowth induced by NGF. These results identify a novel connection between a neuron-specific BRI protein and the cytoskeletal network, suggesting possible roles of BRI3 in the process of neuronal differentiation.

장기간 플루세틴 처리에 의한 흰쥐 해마에서의 NCAM140 유전자 발현의 증가 (Chronic Treatment of Fluoxetine Increases Expression of NCAM140 in the Rat Hippocampus)

  • 최미란;채영규;정경화;백승연;김석현;노성원;최준호;이준석;최인근;양병환
    • 생물정신의학
    • /
    • 제16권1호
    • /
    • pp.5-14
    • /
    • 2009
  • Objectives : Most of the mechanisms reported for antidepressant drugs are the enhancement of neurite outgrowth and neuronal survival in the rat hippocampus. Neural cell adhesion molecule 140(NCAM140) has been implicated as having a role in cell-cell adhesion, neurite outgrowth, and synaptic plasticity. In this report, we have performed to elucidate a correlation among chronic antidepressant treatments, NCAM140 expression, and activation of phosphorylated cyclicAMP responsive element binding protein(pCREB) which is a downstream molecule of NCAM140-mediated intracellular signaling pathway in the rat hippocampus. Methods : Fluoxetine(10mg/kg) was injected acutely(daily injection for 5days) or chronically(daily injection for 14days) in adult rats. RNA and protein were extracted from the rat hippocampus, respectively. Real-time RT-PCR was performed to analyze the expression pattern of NCAM140 gene and western blot analyses for the activation of the phosphorylation ratio of CREB. Results : Chronic fluoxetine treatments increased NCAM140 expression 1.3 times higher than control in rat hippocampus. pCREB immunoreactivity in the rat hippocampus with chronic fluoxetine treatment was increased 4.0 times higher than that of control. Conclusion : Chronic fluoxetine treatment increased NCAM140 expression and pCREB activity in the rat hippocampus. Our data suggest that NCAM140 and pCREB may play a role in the clinical efficacy of antidepressants promoting the neurite outgrowth and neuronal survival.

  • PDF

조구슬 디클로로메탄분획이 CT105에 의한 신경세포 상해에 미치는 영향 (Effects of Ramulus et Uncus Uncariae DM fraction on CT105-injuried Neuronal Cells)

  • 장현호;최혁;양현덕;김상태;김태현;강형원;유영수
    • 동의생리병리학회지
    • /
    • 제18권6호
    • /
    • pp.1810-1820
    • /
    • 2004
  • The purpose of this study was to estimate the effects of Ramulus et Uncus Uncariae DM fraction on CT105-injuried neuronal cells. We were examined by ROS formation, neurite outgrowth assay and DPPH scravage assay. Additionally, we investigated the association between the CT105 and neurite degeneration caused by CT105-induced apoptotic response in neurone cells. We studied on the regeneratory and inhibitory effects of anti-Alzheimer disease in pCT105-induced neuroblastoma cell lines by REUD. Findings from our experiments have shown that REUD inhibits the synthesis or activities of CT105, which has neurotoxityies and apoptotic activities in cell line. In addition, treatment of REUD(>50㎍/㎖ for 12 hours) partially prevented CT105-induced cytotoxicity in SK-N-SH cell lines, and were inhibited by the treatment with its. REUD(>50㎍/㎖ for 12 hours) repaired CT105-induced neurite outgrowth when SK-N-SH cell lines was transfected with CT105. As the result of this study, In REUD group, the apoptosis in the nervous system was inhibited, the repai: against the degeneration of Neuroblastoma cells by CT105 expression was promoted. Base on these findings, REUD may be beneficial for the treatment of AD.