• Title/Summary/Keyword: Outfitting

Search Result 75, Processing Time 0.023 seconds

Transient Torsional Vibration Response due to Ice Impact Torque Excitation on Marine Diesel Engine Propulsion Shafting (선박용 디젤엔진 추진축에서 빙 충격 토크 기진에 의한 과도 비틀림 진동 응답)

  • Barro, Ronald D.;Eom, Ki Tak;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.321-328
    • /
    • 2015
  • In recent years, there has been an increasing demand to apply the new IACS(International Association of Classification Societies) standards for ice and polar-classed ships. For ice-class vessel propulsion system, the ice impact torque design criterion is defined as a periodic harmonic function in relation to the number of the propeller blades. However, irregular or transient ice impact torque is assumed to occur likely in actual circumstances rather than these periodic loadings. In this paper, the reliability and torsional vibration characteristics of a comparatively large six-cylinder marine diesel engine for propulsion shafting system was examined and reviewed in accordance with current regulations. In this particular, the transient ice impact torque and excessive vibratory torque originating from diesel engine were interpreted and the resonant points identified through theoretical analysis. Several floating ice impacts were carried out to evaluate torque responses using the calculation method of classification rule requirement. The Newmark method was used for the transient response analysis of the whole system.

A Study on the Prediction System of Block Matching Rework Time (블록 정합 재작업 시수 예측 시스템에 관한 연구)

  • Jang, Moon-Seuk;Ruy, Won-Sun;Park, Chang-Kyu;Kim, Deok-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.66-74
    • /
    • 2018
  • In order to evaluate the precision degree of the blocks on the dock, the shipyards recently started to use the point cloud approaches using the 3D scanners. However, they hesitate to use it due to the limited time, cost, and elaborative effects for the post-works. Although it is somewhat traditional instead, they have still used the electro-optical wave devices which have a characteristic of having less dense point set (usually 1 point per meter) around the contact section of two blocks. This paper tried to expand the usage of point sets. Our approach can estimate the rework time to weld between the Pre-Erected(PE) Block and Erected(ER) block as well as the precision of block construction. In detail, two algorithms were applied to increase the efficiency of estimation process. The first one is K-mean clustering algorithm which is used to separate only the related contact point set from others not related with welding sections. The second one is the Concave hull algorithm which also separates the inner point of the contact section used for the delayed outfitting and stiffeners section, and constructs the concave outline of contact section as the primary objects to estimate the rework time of welding. The main purpose of this paper is that the rework cost for welding is able to be obtained easily and precisely with the defective point set. The point set on the blocks' outline are challenging to get the approximated mathematical curves, owing to the lots of orthogonal parts and lack of number of point. To solve this problems we compared the Radial based function-Multi-Layer(RBF-ML) and Akima interpolation method. Collecting the proposed methods, the paper suggested the noble point matching method for minimizing the rework time of block-welding on the dock, differently the previous approach which had paid the attention of only the degree of accuracy.

A Study on the Structural Reinforcement for the Reduction of Transverse Vibration by Ship's Main Engine (선박 주기관에 의한 횡진동 저감을 위한 구조보강 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun;Im, Hong-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.279-285
    • /
    • 2019
  • Transverse vibrations of a ship's aft end and deckhouse are mainly induced by transverse exciting forces from the main engine. Resonance should be avoided in the initial design stages when there is a prediction of resonance between the main engine and transverse modes of the deckhouse. Estimates of frequencies for resonance avoidance are possible from the specifications of the main engine and propeller, but the inherent vibration frequency of the structure around the engine room is not easy to estimate due to the variation in the shape. Experience-oriented vibration design is also carried out, which results in many problems, such as process delay, over-injection of on-site personnel, and iterative performance of the design. For the flexible design of 8,600 TEU container vessels, this study addressed the resonance problem caused by the transverse vibration of the main engine when only the main engine was changed from 12 cylinders to 10 cylinders without modification of the hull structure layout. Efficient structural reinforcement design guidelines are presented for avoiding resonances with the main engine lateral vibration and the structure around the engine room. The guidelines are expected to be used as practical design guidelines at design sites.

Mechanical Alignment of Hull Mounted Phased Array Radar on the Separated Mast (분리된 마스트에 설치되는 선체고정 위상 배열 레이더의 기계적 정렬)

  • Seo, Hyeong-Pil;Kim, Dae-Han;Kim, Joon-Woo;Lee, Kyung-Jin;Cho, Kyu-Lyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.465-473
    • /
    • 2019
  • This paper is meaningful as the first case where a 4 - sided hull-fixed phased array radar was installed on a mast separated from Korea and the alignment was verified. The mechanical alignment method was studied for accurately mounting two separate masts for naval ships and the 3D scanner for alignment. Hull-fixed phased array radar uses very high frequency, so the short wavelength can cause a phase difference of the device due to the small positional error. Since the array antenna is fixed with the hull, it has higher accuracy control than the rotary radar for 4 array surfaces. The study describes a method of checking the flatness of two radar masts manufactured at a factory, a method of aligning masts in a shipyard, and a method of aligning four array pad mounting surfaces. As a tool for this, a 3D laser scanner and a software-based method for comparing survey results with 3D CAD are used. This paper is meaningful as the first example of installing a four-sided hull-fixed phased array radar on a separate mast from a Korean naval ship and deriving a mechanical alignment method.

A Study on the Optimization of Main Dimensions of a Ship by Design Search Techniques based on the AI (AI 기반 설계 탐색 기법을 통한 선박의 주요 치수 최적화)

  • Dong-Woo Park;Inseob Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1231-1237
    • /
    • 2022
  • In the present study, the optimization of the main particulars of a ship using AI-based design search techniques was investigated. For the design search techniques, the SHERPA algorithm by HEEDS was applied, and CFD analysis using STAR-CCM+ was applied for the calculation of resistance performance. Main particulars were automatically transformed by modifying the main particulars of the ship at the stage of preprocessing using JAVA script and Python. Small catamaran was chosen for the present study, and the main dimensions of the length, breadth, draft of demi-hull, and distance between demi-hulls were considered as design variables. Total resistance was considered as an objective function, and the range of displaced volume considering the arrangement of the outfitting system was chosen as the constraint. As a result, the changes in the individual design variables were within ±5%, and the total resistance of the optimized hull form was decreased by 11% compared with that of the existing hull form. Throughout the present study, the resistance performance of small catamaran could be improved by the optimization of the main dimensions without direct modification of the hull shape. In addition, the application of optimization using design search techniques is expected for the improvement in the resistance performance of a ship.