• Title/Summary/Keyword: Outer rotor

Search Result 176, Processing Time 0.028 seconds

Characteristics Analysis of Outer Rotor type BLDC Motor for Service Robot Arm (서비스 로봇관절용 외전형 BLDC 모터 특성해석 연구)

  • Kim, Yeong-Gyun;An, Jun-Seon;Son, Seok-Geum;Park, Jong-Chan;Yu, Se-Hyeon;Jeong, In-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.722-723
    • /
    • 2015
  • This paper presents characteristics Analysis of Outer Rotor type BLDC Motor. To reduce the cogging torque and to make the high back EMF constant of the motor, Not only magnetization directions of a permanent magnet are investigated, but also a tooth chamfer of a stator is optimized. The design and analysis results are verified with experimental results.

  • PDF

Parametric Optimization and Performance Analysis of Outer Rotor Permanent Magnet Flux Switching Machine for Downhole Application

  • Kumar, Rajesh;Sulaiman, Erwan;Jenal, Mahyuzie;Bahrim, Fatiah Shafiqah
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • To empower safe, economical and eco-friendly sustainable solution for enhancing oil and gas productivity from deep water reservoirs, new downhole technologies are recommended. Since electric machine plays leading role in the downhole application, it is a squeezing requirement for researchers to design and develop advanced electric machine. The Recent improvement in technology and uses of high-temperature magnets, permanent magnet flux switching machine (PMFSM) has become one of the appropriate contenders for offshore drilling but fewer designed for downhole due to ambient temperature. Therefore this comprehensive study deals with the design optimization and performance analysis of outer rotor PMFSM for the downhole application. Preliminary, the basic design parameters needed for machine design are calculated mathematically. Then the design refinement technique is implemented through deterministic method. Finally, initial and optimized performance of the machine is compared and as a result the output torque is increase from 16.39 Nm to 33.57 Nm while diminishing the cogging torque and PM weight up to 1.77 Nm and 0.79 kg, respectively. Therefore, it is concluded that purposed optimized design is suitable for the downhole application.

Improvement of Aerodynamic Efficiency of Supersonic Stage by the Modification of Hub Flowpath Shape (허브면 형상의 변경을 통한 초음속 압축단의 공력효율 개선)

  • Park, Kicheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.227-233
    • /
    • 2002
  • It is common for highly loaded supersonic stage to have very high relative inlet Mach number. To get this level of inlet Mach number, rotor blade outer diameter or rotational speed should be increased. In the case of commercial turbo-fan engine, it is preferred to make the rotor blade outer diameter large than increasing the rotational speed. But, for multi-stage fan of military engines, overall diameter is often restricted and they are apt to increase the rotational speed. With high rotational speed, relative inlet Mach number is likely to be well supersonic over the entire rotor blade span and the characteristic of the stage is affected with meridional shape of the stage, especially at near hub or tip. In this paper, the aerodynamic performance of two different hub surface shape is compared and it's merit and demerits were discussed.

  • PDF

Cogging Torque Reduction Design for CVVT Using Response Surface Methodology (RSM을 이용한 CVVT용 전동기 코깅토크 저감 설계)

  • Kim, Jae-Yui;Kim, Dong-min;Park, Soo-Hwan;Hon, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2183-2188
    • /
    • 2016
  • This paper deals with the design process for an outer-rotor-type surface-mounted permanent magnet synchronous motor (SPMSM) used in continuous variable valve timing (CVVT) systems in automobiles with internal combustion engines. When the same size, outer-rotor-type SPMSMs generate larger torque and more stable than inner-rotor-type SPMSMs. For the initial design, space harmonic analysis (SHA) is used. In order to minimize the cogging torque, an optimization was conducted using Response Surface Methodology (RSM). At the end of the paper, Finite Element Analysis (FEA) is performed to verify the performance of the optimum model.

A Study on the Characteristics of a Counter Rotating DC Motor (반전직류전동기(Counter Rotating DC Motor, CRDCM)의 특성 연구)

  • Kim, Hyun-Chel;Kong, Yeong-Kyung;Kong, Gwan-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.101-103
    • /
    • 1994
  • This report describes CRDCM(Counter Rotating DC Motor) that we have designed, manufactured and tested. CRDCM have two rotating rotors: one is a outer rotor as field set, another is a inner rotor as armature set. One of the most difficult problem is an elimination of the centrifugal force acting on brush when outer rotor is rotated. We solved a problem for centrifugal force of commutation brush by compensation set of counter mass through trial and error. It was verified the performance of motor at present.

  • PDF

Rotordynamic Characteristics of an APU Gas Turbine Rotor-Bearing System Having a Tie Shaft

  • Lee, An-Sung;Lee, Young-Seob
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.152-159
    • /
    • 2001
  • In this paper it is intended to set-up a sound model of the 60,000rpm 100kW prototype APU gas turbine rotor-bearing system, and particularly to investigate the influences of the tie shaft on the rotordynamic characteristics of the entire APU gas turbine rotor-bearing system, employing the dual shaft model. Firstly, a mock-up APU rotor has been constructed to test and verify the model. Analytical natural frequency results have agreed with the corresponding modal test ones to within 5% difference. Then, the rotordynamic characteristics of the prototype APU rotorbearing system have been investigated. Natural vibration and unbalance response analyses results have shown that the inner tie shaft resonance can cause high enough vibration of the outer main rotor shaft. This could be a concern as the rotor journals operate on very thin air film at high speed. It is concluded as a conservative design practice that the inner tie shaft should be explicitly modeled in the rotordynamic analysis of the APU rotor-bearing system.

  • PDF