• Title/Summary/Keyword: Outer membrane vesicle

Search Result 19, Processing Time 0.024 seconds

A Study on the Oogenesis of Pale Chub (Zacco platypus) (피라미(Zacco platypus)의 난자형성에 관한 연구)

  • Jang, Seung-Jae;Kim, Dong-Heui;Reu, Dong-Suck;Deung, Young-Kun
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.63-74
    • /
    • 1995
  • The development of pale chub oocyte from the immature oogonium to mature oocyte was investigated by light and electron microscope. The cytoplasm of pale chub oogonia was acidic and many vesicles were located at inner side of nuclear membrane. In primary oocytes, yolk vesicles were distributed in cytoplasm. Also, fibrous materials and protuberances were distributed on the surface of zona radiata. The nucleus of secondary oocyte was enlarged and yolk vesicles in cytoplasm migrated to zona radiata. In early egg, yolk mass are formed and yolk vesicles were located at inner side of zona radiata. Three-layered zona radiata was about $3{\mu}m$ in thickness. The three layers were an outer fibrous material layer, a middle nurse cell layer in which microvilli of early egg cytoplasm contact with processes of nurse cells, and an inner layer with high electron density. In mature egg, euchromatin and a germinal vesicle were developed, mitochondria, free ribosomes, and yolk mass were distributed in cytoplasm. But, yolk vesicles were disappeared. Specially, zona radiata of matured eggs were better thin than the one of immature eggs In conclusion, it is summerized that the oogenesis of pale chub were the increase of cell size, the formation and accumulation of yolk, the decrease in nucleat electron density, changes of zona radiata, and the development of microvilli.

  • PDF

T Cell Microvilli: Finger-Shaped External Structures Linked to the Fate of T Cells

  • Hye-Ran Kim;Jeong-Su Park;Won-Chang Soh;Na-Young Kim;Hyun-Yoong Moon;Ji-Su Lee;Chang-Duk Jun
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.3.1-3.14
    • /
    • 2023
  • Microvilli are outer membrane organelles that contain cross-linked filamentous actin. Unlike well-characterized epithelial microvilli, T-cell microvilli are dynamic similar to those of filopodia, which grow and shrink intermittently via the alternate actin-assembly and -disassembly. T-cell microvilli are specialized for sensing Ags on the surface of Ag-presenting cells (APCs). Thus, these finger-shaped microprotrusions contain many signaling-related proteins and can serve as a signaling platforms that induce intracellular signals. However, they are not limited to sensing external information but can provide sites for parts of the cell-body to tear away from the cell. Cells are known to produce many types of extracellular vesicles (EVs), such as exosomes, microvesicles, and membrane particles. T cells also produce EVs, but little is known about under what conditions T cells generate EVs and which types of EVs are released. We discovered that T cells produce few exosomes but release large amounsts of microvilli-derived particles during physical interaction with APCs. Although much is unanswered as to why T cells use the same organelles to sense Ags or to produce EVs, these events can significantly affect T cell fate, including clonal expansion and death. Since TCRs are localized at microvilli tips, this membrane event also raises a new question regarding long-standing paradigm in T cell biology; i.e., surface TCR downmodulation following T cell activation. Since T-cell microvilli particles carry T-cell message to their cognate partner, these particles are termed T-cell immunological synaptosomes (TISs). We discuss the potential physiological role of TISs and their application to immunotherapies.

Studies on Ultrastructure and Virus Infection of Aspergillus ochraseus (Aspergillus ochraseus의 미세구조(微細構造) 및 바이러스 감염(感染)에 관(關)한 연구(硏究))

  • Deung, Young-Kun;Lew, Young-Sern;Lee, Bae-Ham
    • Applied Microscopy
    • /
    • v.5 no.1
    • /
    • pp.31-43
    • /
    • 1975
  • These studies were carried out to detect the presence of infected virus- like particles and also were observed the ultrastructures of Aspergillus ochraseus isolated from kokja and Korean ginseng. The results of ultrastructures of Aspergillus ochraseus are summarized as follows: 1. In fungal cells, nuclei were enclosed by a irregular double membrane and nucleoli in the nucleus. 2. In cytoplasm, mitochondria, rough endoplasmic reticulum with ribosomes and glycogen were scattering distributed and many lomasomes also observed. 3. The osmiophilic bodies of fungal cells existed in the vesicles. 4. The cell walls were composed of a low electron dense materials. 5, Conidia cell walls were extremely thick and possessed the high electron density of outer coat. The virus-like particles were observed in the hyphae of Penicillium chrysogenum Q-176. These virus-like particles measured $350{\AA}$ in diameter. But strains of Aspergillus ochraseus, showing some vesicle particles were also observed about $800{\AA}$ in diameter in the central region of young fungal hyphae. Based on the results of these experiments, it can not be determined virus particles or not. The further studies to determination of virus particles will be proceeded by the chemical, physical and biological assay methods.

  • PDF

An Ultrastructural Study on the Development of Inner Retinal Layer in Korean Human Fetuses (한국사람태아 내망막층 발생에 관한 미세구조적 연구)

  • Kim, Baik-Yoon;Yang, Hyong-Mo;Yoon, Jae-Rhyong
    • Applied Microscopy
    • /
    • v.30 no.2
    • /
    • pp.121-139
    • /
    • 2000
  • The morphogenesis of neuroblasts and plexiform layers, and establishment of its synapses were studied by electron microscopy in human embryos and fetuses ranging from 10 mm to 260 mm crown-rump length ($5\sim30$ weeks of gestational age). At 30 mm fetus the developing retina was composed of outer and inner neuroblastic layers . Cell division of outer neuroblast was occurred until 90 mm fetus. The transient layer of Chievitz was formed by 30 mm fetus, inner plexiform layer by 50 mm fetus, and outer plexiform layer by 150 mm fetus. The cytoplasm of differentiating ganglion cells contained ribosomes, rough endoplasmic reticula, Golgi complexes, microtubules and dense bodies. The processes of $M\ddot{u}ller$ cell penetrated between groups of ganglion cell axons, and formed the cellular component of the inner limiting membrane at 30 mm fetus. At 90 mm fetus radial fibers of M ller cells contained extensive smooth endoplasmic reticula and microtubules. In each specimen , apposing paired membrane specializations were classified as junctions without synaptic vesicles, conventional synapses and ribbon synapses. At 50 mm fetus the processes of neuroblasts in inner plexiform layer were interconnected by junctions without synaptic vesicles. Conventional synapses developed by addition of synaptic vesicles to initially vesicle-free junctions at 90 mm fetus. At 150 mm fetus ribbon synapses were first recognized by the inclusion of a prominent electron-dense material associated with synaptic vesicles. By 260 mm fetus conventional and ribbon synapses and junctions without synaptic vesicles formed similar to those found in the adult.

  • PDF

Effects of protein concentration and detergent on endotoxin reduction by ultrafiltration

  • Jang, Hyun;Kim, Hyo-Seung;Moon, Seung-Cheol;Lee, Young-Rae;Yu, Kang-Yeoul;Lee, Byeong-Kil;Youn, Hyun-Zo;Jeong, Young-Ju;Kim, Byeong-Soo;Lee, Sung-Ho;Kim, Jong-Suk
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.462-466
    • /
    • 2009
  • Lipopolysaccharide (LPS), found in the outer membrane of Gram negative bacteria, only exerts its toxic effects when in free form. LPS has three major parts, lipid A, the toxic component, along with a core polysaccharide and O-specific polysaccharide. LPS monomers are known to have molecular masses between 10 to 30 kDa. Under physiological conditions, LPS exists in equilibrium between monomer and vesicle forms. LPS removal by 100 kDa ultrafiltration was more efficient (99.6% of LPS removed) with a low concentration of protein (2.0 mg/ml) compared to a high concentration (20.1 mg/ml). In the presence of different detergents (0.5% Tween 20, 1.0% taurodeoxycholate and 1.0% Triton X-100), LPS removal was more efficient at low protein concentrations (2.0 mg/ml) compared to high protein concentrations (20.1 mg/ml).

The Ultrastructure of the Cutaneous Cells in Rana temporaria dybowskii Guenther (북방산개구리 피부 색소세포의 미세구조)

  • Kim, Han-Hwa;Chi, Young-Duk;Moon, Young-Wha
    • The Korean Journal of Zoology
    • /
    • v.28 no.3
    • /
    • pp.137-150
    • /
    • 1985
  • The dorsal skin of Rana temporaria dybowskii Guenther was examined under electron microscope. The results of the fine structures in the xanthophores, iridophores and melanophores were as follows: Xanthophores: Xanthophores were filled with pterinosomes and carotenoid vesicles. Type I pterinosomes had a clear limiting membrane. Type II pterinosomes had the inner fibrous structures. Tyep III pterinosomes were characterized by a few superficial lamellae and type IV pterinosomes by multiple concentric lamellae. Especially typical type II and type III pterinosomes were evenly distributed in the cytoplasm. Iridophores: Iridophores were situated between a xanthophore and a melanophore in the outer part of the dermis just below the basement membrane. Iridophores were filled with reflective platelets, each of which is rectangular and convex lens-like in shape. These platelets were closely contiguous and leave no interspace between them. Endoplasmic reticulum and a few mitochondria were observed in the supranuclear cytoplasm. Melanophores: Dermal melanophores contained numerous melanosomes. The dendritic precesses of the melanophore containing the melanin granules extented up the lateral sides of the iridophore. Epidermal melanophores were filled with melanin granules which appered as the same electron density. A few melanin granules were observed in a cornified surface cell.

  • PDF

Ultrastructural Changes during Germination of Ginseng Seeds (Panax ginseng) (인삼종자의 발아과정에 있어서 미세구조의 변화)

  • Kim, Woo-Kap;Park, Hong-Duok;Kim, Eun-Soo;Han, Sung-Sik
    • Applied Microscopy
    • /
    • v.9 no.1
    • /
    • pp.57-69
    • /
    • 1979
  • The ultrastructural changes of embryo and endosperm cells were observed during the green fruit with embryo about $250{\mu}$ long to germination. 1. In the embryo cells of green fruit with embryo about $250{\mu}$ long, mitochondrial cristae and plastid are undifferentiated and dictyosome are occasionally observed. There are electron-opaque globoids in the vacuole and a lot of spherosomes in the outer layer of smooth endoplasmic reticulum. Endosperm is filled with spherosomes and electron-opaque protein bodies surrounded by spherosomes, and due to these, other organelle are not observed. 2. In the embryo cells of seeds with red seed coat, mitochondrial cristae are well developed, electron-opaque globoids increased, and vacuoles are enlarged. In the endosperm, however, spherosomes increased, protein bodies are enlarged, and electron-opaque globoidal crystals are dispersed within them. 3. In the procambium and epicotyl cells of dehiscent seed, Golgi vacuoles and vesicles are well developed, and mitochondrial cristae are also well differentiated. Spherosomes are numerously present and radicle cells, peripheral cells of hypocotyl, and vacuoles of cotyledon are well differentiated. Endosperm is filled with spherosomes containing electron-opaque granules and protein bodies are surrounded by a single membrane. There are acid phosphatase around globoids and spherosomes. 4. At the time of seeding, spherosomes markedly increased in the outer layer of cotyledon and protein bodies are also observed. Cell organelles are differentiated and plastids containing starch are also present. 5. In the outer $2{\sim}3$ layers of cotyledons, radicle cells, and peripheral cells of hypocotyl during post-seeding to germination, spherosomes and plastids with starch increased, and mitochondria and microbodies are also found around the nucleus of embryo cells. With approaching, the germination stage, in the endosperm contacting with embryo, vacuoles are well differentiated but spherosomes decreased. There increased electron-opaque materials within vacuoles. In other endosperm, with the decrease of spherosome, mitochondria increased and electro n-opaque globular bodies are formed and gradually increased. The outer layer of protein bodies are reduced while electron-transparent portions are enlarged and fused together to occupy the outer layer where small particles are formed. 6. In the endosperm of germination stage, spherosomes decreased while protein bodies, are fused together to form 2 or 3 within a cell.

  • PDF

Transmission electron microscopic ultastructure of the tegument of Fibricola seoulenis (Fibricola seouenis 표피의 투과전자현미경적 미세구조)

  • 손운목;이순형
    • Parasites, Hosts and Diseases
    • /
    • v.31 no.4
    • /
    • pp.301-314
    • /
    • 1993
  • An electron microscopic study was performed to observe the ultrastructure of the tegument of U seoulensis. The outer surface of the tegument was covered with a tnlaminated plasma membrane. The electron-dense cytoplasmic layer was $2.5{\;}\mu\textrm{m}$ wide In the anterior portion and contained numerous vacuoles, mitochondriae and granular materials in its matrix. The basement layer was 330 nm wade or so, and Its numerous extensions protruded into the cytoplasmic layer. The sensory organ was composed of a small vesicle of $1.7{\;}{\times}{\;}1.1{\;}\mu\textrm{m}$ in dimensions, which possessed a cilium of $1.2{\;}{\times}{\;}0.19{\;}\mu\textrm{m}$ in size. The pharynx was composed of the epithelial layer of about $0.5{\;}\mu\textrm{m}$ wide, well developed muscle layer and basement layer. The tegument of the oral sucker was composed of a cytoplasmic layer of $0.4-0.5{\;}\mu\textrm{m}$ width, a narrow basement layer, a well developed muscle layer and tegumental cells. Some kinds of secretory granules that seemed to be originated from the cells of the oral sucker were observed In the parenchymal portions of the adjacent cells. The tribocytic organ consisted of numerous microvilli. The microvilli were 5 nm wide and heptalaminated. Two types of secretory granules originated from the gland cells of tribocytic organ were observed In the tegument and parenchyme. The tegumental cells were irregular in shape, and of which nuclei were multifarious.

  • PDF

Immunocytochemical Localization of Parvalbumin and Calbindin-D 28K in Monkey Dorsal Lateral Geniculate Nucleus (원숭이 외측슬상체배측핵에서 칼슘결합단백 Parvalbumin과 Calbindin-D 28K의 분포)

  • Ko, Seung-Hee;Bae, Choon-Sang;Park, Sung-Sik
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.61-77
    • /
    • 1994
  • The calcium-binding proteins (CaBP), parvalbumin (PV) and calbindin-D 28K (calbindin) are particularly abundant and specific in their distribution, and present in different subsets of neurons in many brain regions. Although their physiological roles in the neurons have not been elucidated, they are valuable markers of neuronal subpopulations for anatomical and developmental studies. This study is designed to characterize dorsal lateral geniculate nucleus (dLGN) neurons and axon terminals in terms of differential expression of immunoreactivity (IR) for two well-known CaBPs, PV and calbindin. The experiments were carried out on 6 adult monkeys. Monkeys were perfused under deep Nembutal anesthesia with 2% paraformaldehyde and 0.2% glutaraldehyde in 0.1M phosphate buffer. After removal, the brains were postfixed for 6-8 hr in 2% paraformaldehyde at $4^{\circ}C$ and infiltrated with 30% sucrose at $4^{\circ}C$. Thereafter, they were frozen in dry ice. Serial sections of the thalamus, at $20{\mu}m$, were made in the frontal plane with a sliding microtome. The sections were stained for PV and calbindin with indirect immunocytochemical methods. For electron microscopy, after infiltration with 30% sucrose the blocks of thalamus were serially sectioned at $50{\mu}m$ with a Vibratome in the coronal plane and stained immediately by indirect ABC methods without Triton X-100 in incubation medium. Stained sections were postfixed in 0.2% osmium tetroxide, dehydrated and flat-embedded in Spurr resin. The block was then trimmed to contain only a selected lamina or interlaminar space. The dLGN proper showed strong PV IR in fibers in all laminae and interlaminar zones. Particularly dense staining was noted in layers 1 and 2 that contain many stained fibers from optic tract. Neuronal cell body stained with PV was concentrated only in the laminae. In these laminae staining was moderate in cell bodies of all large and medium-sized neurons, and was strong in cell bodies of some small neurons together with their processes. Calbindin IR was marked in the neuronal cell body and neuropil in the S layers and interlaminar zones whereas moderate in the neuropil throughout the nucleus. Regional difference in distribution of PV and calbindin IR cell is distinct; the former is only in the laminae and the latter in both the S layer and interlaminar space. The CaBP-IR elements were confined to about $10{\mu}m$ in depth of Vibratome section. The IR product for CaBP was mainly associated with synaptic vesicle, pre- and post-synaptic membrane, and outer mitochondrial membrane and along microtubule. PV-IR was noted in various neuronal elements such as neuronal soma, dendrite, RLP, F, PSD and some myelinated or unmyelinated axons, and was not seen in the RSD and glial cells. Only a few neuronal components in dLGN was IR for calbindin and its reaction product was less dense than that of PV, and scattered throughout cytoplasm of soma of some relay neurons, and was also persent in some dendrite, myelinated axons and RLP. The RSD, F, PSD and glial elements were always non-IR for calbindin. Calbindin labelled RLP were presynaptic to unlabeled dendrite or dendritic spine and PSD. Calbindin-labeled dendrite of various sizes were always postsynaptic to unlabeled RSD, RLP or F. From this study it is suggested that dLGN cells of different functional systems and their differential projection to the visual cortex can be distinguished by differential expression of PV and calbindin.

  • PDF