• Title/Summary/Keyword: Outer membrane proteins

Search Result 106, Processing Time 0.032 seconds

Induction of Immune Responses by Two Recombinant Proteins of Brucella abortus, Outer Membrane Proteins 2b Porin and Cu/Zn Superoxide Dismutase, in Mouse Model

  • Sung, Kyung Yong;Jung, Myunghwan;Shin, Min-Kyoung;Park, Hyun-Eui;Lee, Jin Ju;Kim, Suk;Yoo, Han Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.854-861
    • /
    • 2014
  • The diagnosis of Brucella abortus is mainly based on serological methods using antibody against LPS, which has diagnostic problems. Therefore, to solve this problem, we evaluated two proteins of B. abortus, Cu/Zn superoxide dismutase (SodC) and outer membrane proteins 2b porin (Omp2b). The genes were cloned and expressed in a pMAL system, and the recombinant proteins, rOmp2b and rSodC, were purified as fusion forms with maltose-binding protein. The identity of the proteins was confirmed by SDS-PAGE and Western blot analysis with sera of mice infected with B. abortus. Production of cytokines and nitric oxide (NO) was investigated in RAW 264.7 cells and mouse splenocytes after stimulation with the proteins. Moreover, cellular and humoral immune responses were investigated in BALB/c mice after immunization with the proteins. TNF-${\alpha}$, IL-6, and NO were significantly inducible in RAW 264.7 cells. Splenocytes of naive mice produced IFN-${\gamma}$ and IL-4 significantly by stimulation. Moreover, number of IgG, IFN-${\gamma}$, and IL-4 producing cells were increased in immunized mice with the two proteins. Production of IgG and IgM with rOmp2b was higher than those with rSodC in immunized mice. These results suggest that the two recombinant proteins of B. abortus may be potential LPS-free proteins for diagnosis.

Toxic Effects of Catechol and 4-Chlorobenzoate Stresses on Bacterial Cells

  • Park, Sang-Ho;Ko, Yeon-Ja;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.206-212
    • /
    • 2001
  • Catechol and 4-chlorobenzoate (4CBA) which are produced from the biodegradation of a variety of aromatic and chloroaromatics have been recognized as toxic to living organisms. In this study, the toxic effects of catechol and 4-chlorobenzoate on gram-positive and -negative bacteria were examined in terms of survival, morphology, change in fatty acids and membrane protein composition. The survival rate of the organisms during treatment for 6 h was decreased, as the concentration of each aromatic was increased. Escherichia coli and Pseudomonas cells treated with catechol and 4CBA at concentrations causing a significant decrease in their viability, showed destructive openings in their cell envelopes. Bacills subtilis treated with the aromatics were reduced in cell size and Staphylococcus aureus cells displayed irregular rod shapes with wrinkled surfaces. The bacterial cells treated with 20 mM catechol showed increases in unsaturated fatty acids, but several saturated fatty acids were decreased. In the E. coli cells treated with 20 mM catechol, inner membrane proteins of 150 kDa and 105 kDa were decreased. But several kinds of the inner and outer membrane proteins were increased. In B. subtilis treated with 20 mM catechol, several kinds of proteins were increased or decreased in membrane proteins.

  • PDF

Partial Characterization of the Pathogenic Factors Related to Chlamydia trachomatis Invasion of the McCoy Cell Membrane

  • Yeo, Myeng-Gu;Kim, Young-Ju;Park, Yeal
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • The present study was performed to identify pathogenic factors of Chlamydia trachomatis, which invade the host cell membrane. We prepared monoclonal antibody against C. trachomatis and searched for pathogenic factors using this antibody, and subsequently identified the surface components of the elementary body of C. trachomatis, i.e., major outer membrane protein (MOMP), lipopolysaccharide (LPS), and two other surface exposure proteins. These proteins are believed to be important in the pathogenesis of host cell chlamydial infection. Additionally, to identify factors related to the host cell and C. trachomatis, we prepared C. trachomatis infected and non-infected McCoy cell extracts, and reacted these with anti-chlamydial LPS monoclonal antibody. We found that anti-chlamydial LPS monoclonal antibody reacted with a 116 kDa proteinaceous McCoy cell membrane component.

Abridged Region from Escherichia coli Periplasmic Stress Sensor DegS Acts as Plasminogen Activator In Vitro

  • Junpeng, Yan;Ko, Juho;Qi, Yipeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.594-599
    • /
    • 2007
  • It is well known that the Escherichia coli inner membrane-bound protease DegS is a periplasmic stress sensor for unfolded outer membrane proteins (OMPs). Previous studies have also shown that the outer membrane protease OmpT activates plasminogen in vitro and this may be exploited by bacteria in the course of pathogenesis. However, there has been no research on the plasminogen activation ability of the important periplasmic protein DegS. Accordingly, in this study, the whole-length and truncated degS genes were separately overexpressed in Escherichia coli, the recombinant proteins purified by affinity chromatography, and their plasminogen activator role tested in vitro. The results suggested that the whole-length DegS was able to activate plasminogen on a plasma plate. The truncated form of DegS (residues 80-345), designated ${\Delta}DegS$, also acted as a plasminogen activator, as confirmed by different assays. The serine protease property of ${\Delta}DegS$ was verified based on the complete inhibition of its enzyme activity by PMSF (phenylmethanesulfonyl fluoride). Therefore, the present results indicate that DegS is a plasminogen activator in vitro.

Protective Antibodies and Immunity elicited by Immunization with Outer Membrane Protein H of Pasteurella multocida in Mice (Pasteurella multocida의 외막 단백질 H에 의해 유도되는 방어적 항체와 면역)

  • Kwon, Moo-Sik;Kim, Young-Bong;Lee, Jeong-Min
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • Pasteurella multocida is one of the important animal pathogen causing widespread infections in various domestic animals. In swine, it causes severe respiratory diseases such as atrophic rhinitis and pneumonic pasteurellosis. To develop the efficient subunit vaccine against swine atrophic rhinitis, we investigated protective antibodies and humoral immunity of outer membrane protein H (OmpH) which is one of the major outer membrane proteins in P. multocida. Outer membrane fraction of P. multocida was immunologically detectable using antisera from both mice groups vaccinated by formalin-killed whole cells and by commercial vaccine. The expression vector for production of recombinant OmpH was constructed and the recombinant OmpH was expressed and purified from E. coli. Recombinant OmpH showed high antigenic and immunogenic properties in mice vaccination and ELISA with antisera.

Expression and Biochemical Characterization of the Periplasmic Domain of Bacterial Outer Membrane Porin TdeA

  • Kim, Seul-Ki;Yum, Soo-Hwan;Jo, Wol-Soon;Lee, Bok-Luel;Jeong, Min-Ho;Ha, Nam-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.845-851
    • /
    • 2008
  • TolC is an outer membrane porin protein and an essential component of drug efflux and type-I secretion systems in Gram-negative bacteria. TolC comprises a periplasmic $\alpha$-helical barrel domain and a membrane-embedded $\beta$-barrel domain. TdeA, a functional and structural homolog of TolC, is required for toxin and drug export in the pathogenic oral bacterium Actinobacillus actinomycetemcomitans. Here, we report the expression of the periplasmic domain of TdeA as a soluble protein by substitution of the membrane-embedded domain with short linkers, which enabled us to purify the protein in the absence of detergent. We confirmed the structural integrity of the TdeA periplasmic domain by size-exclusion chromatography, circular dichroism spectroscopy, and electron microscopy, which together showed that the periplasmic domain of the TolC protein family fold correctly on its own. We further demonstrated that the periplasmic domain of TdeA interacts with peptidoglycans of the bacterial cell wall, which supports the idea that completely folded TolC family proteins traverse the peptidoglycan layer to interact with inner membrane transporters.

Immunological characteristics of Edwardsiella tarda grown under iron-restricted condition (철 결핍 조건에서 배양된 Edwardsiella tarda의 면역학적 특성)

  • Choi, Hyun-Suk;Park, Su-Il;Lee, Deok-Chan
    • Journal of fish pathology
    • /
    • v.19 no.1
    • /
    • pp.45-54
    • /
    • 2006
  • The immunogenicity of Edwardsiella tarda was surveyed under two different culture conditions. In SDS-PAGE patterns of the outer membrane proteins (OMPs) extracts of E. tarda, grown under Trypic soy broth (TSB) and TSB supplemented iron chelate 2,2‘-dipyridyl iron-restricted condition, were examined. The results showed that the iron-regulated outer membrane protein (IROMPs) with molecular masses of 68 and 73 kDa were expressed by bacteria grown in iron-chelate TSB.The pathogenicity was examined by intraperitoneal injection with live E. tarda grown under TSB, iron-chelate TSB and iron-supplemented TSB. The result of pathogenicity test showed significantly high mortality in the group of live E. tarda grown under iron-chelate TSB.The effect of formalin killed cell (FKC) of TSB cultured bacteria and 2,2'-dipyridyl FKC (DP-FKC) of cultured bacteria on the iron-chelate TSB on the development of protective immunity in olive flounder was studied. The level of immune response was evaluated with immunized fish at 1, 2, 3 and 4 weeks after immunization. The numbers of specific antibody secreting cells (SASCs) showed significantly increased level at 2 week after immunization in each group. The agglutination titre of immunized fish was significantly high level at 3 weeks after immunization.The level of protection in olive flounder at 1, 2, 3 and 4 weeks after vaccination was examined by intraperitoneal challenge test with live E. tarda.

Association of UCP2 Polymorphisms with Type 2 Diabetes in Korean Subjects

  • Kim, Su-Won;Yoo, Min
    • Biomedical Science Letters
    • /
    • v.14 no.4
    • /
    • pp.239-242
    • /
    • 2008
  • Obesity results from a combination of genetic, environmental, and behavioral factors. Uncoupling proteins (UCP) are members of the larger family of mitochondrial anion carrier proteins (MACP). UCP separates oxidative phosphorylation from ATP synthesis with energy dissipated as heat, also referred to as the mitochondrial proton leak. UCP facilitates the transfer of anions from the inner to the outer mitochondrial membrane and the return transfer of protons from the outer to the inner mitochondrial membrane. Therefore, we investigated the genotype for the G>A polymorphism at the position -866 of UCP2 gene in Koreans and compared genotype of patients with control group. 50 patients (Male 22, Female 28), who previously underwent type 2 diabetcs (T2DM) and 30 controls (Male 14, Female 16) participated in this study. There was a weak significant association between -866 G>A polymorphism in UCP2 gene and T2DM. The present study shows that UCP2 -866 G>A polymorphism may not be associated with the pathogenesis of T2DM as opposed to the previous reports in other countries. Further studies with larger population may be needed for the development of diagnostic methods at genetic level such as DNA chip.

  • PDF

Protection of Rabbits from Experimental Pseudomonas Endophthalmitis by Human Anti-P. aeruginosa Outer Membrane Proteins IgG

  • Lee, Na-Gyong;Ahn, Bo-Young;Kwon, Oh-Woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.444-450
    • /
    • 2003
  • In order to develop an effective means to treat P. aeruginosa infections, we have purified P. aeruginosa outer membrane proteins (OMPs)-specific human IgG antibody. In this study, we investigated the protective activity of the purified anti-OMPs IgC against P. aeruginosa infection in a rabbit endophthalmitis model. Rabbits were inoculated by an intravitreal injection with P. aeruginosa, and treated with a single dose of 1 mg anti-P. aeruginosa OMPs IgG. All the control rabbits predominantly developed edematous responses and opacity in the eyes, but the rabbits treated with the antibody showed only very limited degree of edema. Aliquots of the vitreous humor were extracted and analyzed for the number of viable bacteria and endotoxin level. The results showed that the anti-OMPs IgC significantly reduced the bacterial count compared with the control group, and that the endotoxin level of the vitreous from the IgG-treated rabbits was more than 70-fold lower 6 h after the administration than the control animals. These data suggested that the anti-P. aeruginosa OMPs IgG is effective in inhibiting the bacterial growth and thereby in reducing endotoxin levels in the vitreous, warranting further development of the anti-P. aeruginosa OMPs IgG as a therapeutic means for treating Pseudomonas endophthalmitis.

Detection of Salmonella in Milk by Sandwich ELISA using Anti-Outer Membrane Protein Immunoglobulins (Anti-Outer Membrane Protein 면역단백질을 이용한 Sandwich ELISA 방법에 의한 우유 내 Salmonella의 검출)

  • 최석호
    • Food Science of Animal Resources
    • /
    • v.24 no.2
    • /
    • pp.176-181
    • /
    • 2004
  • The specificity of sandwich enzyme-linked immunosorbent assay (ELISA) to detect Salmonella in milk was determined in this study. The antibodies used in sandwich ELISA were egg yolk immunoglobulin G (IgY) obtained after immunization of hen with outer membrane protein (OMP) fraction from Salmonella typhimurium and rabbit IgG obtained after immunization of rabbit with the purified OMP with the molecular weight of 40,000. The immunoblot assay showed that the IgY reacted strongly with OMP with the molecular weight of 6,000 and the rabbit IgG reacted strongly with OMP with the molecular weights of 40,000, 35,000, and 6,000 from the bacteria including Salmonella which belongs to Enterobacteriaceae. The IgY and rabbit IgG also reacted with other proteins from Salmonella typhimurium in immunoblot assay. Competitive ELISA showed that IgY showed specifity to react with two strains of Salmonella typhimurium and Salmonella cholerasuis but not with Escherichia coli and Yersinia enterocolitica. Two strains of Salmonella typhimurium added to UHT milk showed the highest absorbance of all the bacteria used in the sandwich ELISA. Some strains of Salmonella cholerasuis showed higher absorbances than non-Salmonella bacteria.