• Title/Summary/Keyword: Outer Zone

Search Result 227, Processing Time 0.03 seconds

An Experimental Study on Shear Strength of RCS System Beam-Column Jointswith Various Transverse Beam Sections (직교보 단면크기 변화에 따른 RCS구조 보-기둥 접합부의 전단내력에 관한 실험적 연구)

  • An, Jae-Hyeok;Park, Cheon-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.197-204
    • /
    • 2006
  • Recently, in order to realization of construction and economical saving, various studies are progressing. Also, the study on RCS system which is consisted of reinforced concrete column and steel beam is progressing actively. Actually, however, resisting mechanism of panel zone is influenced by transverse beams when the stress transfers inner panel to outer panel but existing literature didn't reflect the effect of transverse beams. This paper is to analyze the test result of five inner beam-column joints specimen with a variable such as web, flange thickness of transverse beam and face bearing plate(FBP) for RCS systems were tested under cyclic loadings conforming to NEHRP recommendation to investigate the effect of transverse beams and the structural performance of beam-column joints. From the test result, it was shown that transverse beams are effective to enhance the shear strength and structural performance of beam-column joints.

Microstructural Investigation of Alloy 617 Creep-Ruptured in Pure Helium Environment at 950℃ (950℃ 순수헬륨 분위기에서 크리프 파단된 Alloy 617의 미세구조적 고찰)

  • Lee, Gyeong-Geun;Jung, Su-Jin;Kim, Dae-Jong;Kim, Woo-Gon;Park, Ji-Yeon;Kim, Dong-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.596-603
    • /
    • 2011
  • The very high temperature gas reactor (VHTR) is one of the next generation nuclear reactors for its safety, long-term stability, and proliferation-resistance. The high operating temperature of over 800$^{\circ}C$ enables various applications with high energy efficiency. Heat is transferred from the primary helium loop to the secondary helium loop through the intermediate heat exchanger (IHX). The IHX material requires creep resistance, oxidation resistance, and corrosion resistance in a helium environment at high operating temperatures. A Ni-based superalloy such as Alloy 617 is considered as a primary candidate material for the intermediate heat exchanger. In this study, the microstructures of Alloy 617 crept in pure helium and air environments at 950$^{\circ}C$ were observed. The rupture time in helium was shorter than that in air under small applied stresses. As the exposure time increased, the thickness of outer oxide layer of the specimens clearly increased but delaminated after a long creep time. The depth of the carbide-depleted zone was rather high in the specimens under high applied stress. The reason was elucidated by the comparison between the ruptured region and grip region of the samples. It is considered that decarburization caused by minor gas impurities in a helium environment caused the reduction in creep rupture time.

A Study on the Characteristics of Boiling Heat Trausfer of Thermosyphon Heat Exchangers with Various Micro Grooves (마이크로 그루브를 가진 열사이폰 열교환기의 비등열전달 특성에 관한 연구)

  • Cho Dong-Hyun;Lee Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.5
    • /
    • pp.421-428
    • /
    • 2004
  • This study concerns the characteristics of boiling heat transfer in two-phase closed thermosyphons with various micro grooves. A study was carried out with the performance of the heat transfer of the thermosyphon having 60 internal micro grooves in which boiling and condensation occur. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphon is also tested for comparison. Distilled water, methanol, ethanol have been used as the working fluid. The heat flux and the boiling heat transfer coefficient at the evaporator zone are estimated from the experimental results. The experimental results have been assessed and compared with existing correlations. Imura's and Kusuda's correlation for boiling showed in good agreement with experimental results within ${\pm}20{\%}$ in plain thermosyphon.

  • PDF

Connections between RC beam and square tubed-RC column under axial compression: Experiments

  • Zhou, Xu-Hong;Li, Bin-Yang;Gan, Dan;Liu, Jie-Peng;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.453-464
    • /
    • 2017
  • The square tubed-reinforced concrete (TRC) column is a kind of special concrete-filled steel tube (CFST) columns, in which the outer thin-walled steel tube does not pass through the beam-column joint, so that the longitudinal steel reinforcing bars in the RC beam are continuous through the connection zone. However, there is a possible decrease of the axial bearing capacity at the TRC column to RC beam connection due to the discontinuity of the column tube, which is a concern to engineers. 24 connections and 7 square TRC columns were tested under axial compression. The primary parameters considered in the tests are: (1) connection location (corner, exterior and interior); (2) dimensions of RC beam cross section; (3) RC beam type (with or without horizontal haunches); (4) tube type (with or without stiffening ribs). The test results show that all specimens have relatively high load-carrying capacity and satisfactory ductility. With a proper design, the connections exhibit higher axial resistance and better ductility performance than the TRC column. The feasibility of this type of connections is verified.

Evaluation of the Degradation of a 1300℃-class Gas Turbine Blade by a Coating Analysis (1300℃급 가스터빈 1단 블레이드의 코팅분석을 이용한 열화평가)

  • Song, Tae Hoon;Chang, Sung Yong;Kim, Beom Soo;Chang, Jung Chel
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.901-906
    • /
    • 2010
  • The first stage blade of a gas turbine was operated under a severe environment which included both $1300^{\circ}C$ hot gas and thermal stress. To obtain high efficiency, a thermal barrier coating (TBC) and an internal cooling system were used to increase the firing temperature. The TBC consists of multi-layer coatings of a ceramic outer layer (top coating) and a metallic inner layer (bond coat) between the ceramic and the substrate. The top and bond coating layer respectively act as a thermal barrier against hot gas and a buffer against the thermal stress caused by the difference in the thermal expansion coefficient between the ceramic and the substrate. Particularly, the bondcoating layer improves the resistance against oxidation and corrosion. An inter-diffusion layer is generated between the bond coat and the substrate due to the exposure at a high temperature and the diffusion phenomenon. A thickness measurement result showed that the bond coat of the suction side was thicker than that of the pressure side. The thickest inter-diffusion zone was noted at SS1 (Suction Side point 1). A chemical composition analysis of the bond coat showed aluminum depletion around the inter-diffusion layer. In this study, we evaluated the properties of the bond coat and the degradation of the coating layer used on a $1300^{\circ}C$-class gas turbine blade. Moreover, the operation temperature of the blade was estimated using the Arrhenius equation and this was compared with the result of a thermal analysis.

Experimental Study of Secondary Flow Using Real-scale Experiment Channel (실규모 실험수로를 이용한 이차류 특성에 대한 실험적 연구)

  • LEE, Du Han;SON, Minwoo;KIM, Young Do;KIM, Jung Min
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.13-25
    • /
    • 2012
  • This study aims to experimentally investigate the characteristics of secondary flows in a natural channel. For this objective, various conditions of water discharge and depth are tested in a real-scale experimental channel which has 1.2 of meandering. From results of experiments, it is observed that the maximum flow velocity exists in the outer zone of ben. This result is different from the previous studies conducted with laboratory experiments. The bank of 1:2 slope replicating the condition of natural channel is considered to cause this result. The location of the maximum flow velocity moves to the center of channel as the channel changes to be straight. It is also known from this study that two vorteces coexist on the left and right banks of bend.

A Study on Heat Transfer Characteristics of Helical Coiled Tube (나선코일의 열전달 특성에 관한 연구)

  • PARK, Jong-Un;CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.16 no.2
    • /
    • pp.257-270
    • /
    • 2004
  • The two-phase closed thermosyphon is a heat transfer device capable of transfer large quantities of heat from a source to a sink by taking advantage of the high heat transfer rates associated with the evaporation and condensation of a working fluid within the device. A study was carried out with the performance of the heat transfer of the thermosyphon having 50, 60, 70, 80, 90 internal micro grooves in which boiling and condensation occur. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphon is also tested for comparison. Water, methanol and ethanol have been used as the working fluids. The liquid filling as the ratio of working fluid volume to total volume of thermosyphon, the inclination angle, micro grooves and operating temperature have been used as the experimental parameters. The heat flux and the boiling and the condensation heat transfer coefficient and overall heat transfer coefficient at the condenser and evaporator zone are estimated from the experimental results. The experimental results have been assessed and compared with existing correlations. Imura's and Kusuda's correlation for boiling showed in good agreement with experimental results within ${\pm}20$% in plain thermosyphon. The maximum heat transfer rate was obtained when the liquid fill ratio was about 25%. The high heat transfer coefficient was found between 25o and 30o of inclination angle for water and between 20o and 25o for methanol and ethanol. The relatively high rates of heat transfer have been achieved in the thermosyphon with internal micro grooves. The micro grooved thermosyphon having 60 grooves shows the best heat transfer coefficient in both condensation and boiling. The maximum enhancement (i.e. the ratio of the heat transfer coefficients of the micro grooved thermosyphon to plain thermosyphon) is 2.5 for condensation and 2.3 for boiling.

Occurrence of Pyrobitumen in the Lower Cretaceous Jinju Formation, Korea (하부 백악기 진주층에서 산출되는 고열역청(pyrobitumen)의 산상)

  • Choi, Taejin;Lim, Hyoun Soo;Lee, Jae Il;Lee, Yong Il
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.639-646
    • /
    • 2022
  • Occurrence of black opaque hydrocarbon (pyrobitumen) in some Cretaceous Jinju sandstones of the Sindong Group, Gyeongsang Basin in Korea is first reported in this study. The pyrobitumen is developed on chlorite pore-lining cement, or impregnated into the outer zone of chlorite cement. Therefore, it seems to have been formed after the precipitation of chlorite cement, indicating the former presence of crude oil. The liquid hydrocarbons migrated into sandstones during moderate burial and these sandstones seem to have acted as a liquid hydrocarbon reservoir. The presence of pyrobitumen in the Jinju Formation indicates that this formation underwent deep burial after liquid hydrocarbon migration. As reservoir temperatures increased further, hydrocarbons were cracked and a solid pyrobitumen residue remained in the reservoir.

IN VITRO STUDY OF DEMINERALIZATION INHIBITION EFFECT AND FLUORIDE UPTAKE INTO ADJACENT TEETH OF LIGHT-CURED FLUORIDE-RELEASING RESTORATIVES (수종의 불소방출 수복재의 탈회억제 효과 및 불소침투에 관한 연구)

  • Kim, Song-Yi;Choi, Sung-Chul;Kim, Kwang-Chul;Choi, Yeong-Chul;Park, Jae-Hong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.3
    • /
    • pp.288-297
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of light cured fluoride-releasing materials on the inhibition of demineralization. In addition, the pattern of fluoride uptake of adjacent tooth structure was analyzed with EPMA. Eighty intact premolars were restored with $Filtek^{TM}$ Z250(control group, composite), Fuji Filling $LC^{TM}$(RMGI), Dyract $AP^{(R)}$ (compomer) and Beautifil II(giomer). Restored teeth were stored in distilled water for 30 days. Then sixty teeth(n=15) were exposed to demineralizing solution(pH 4.3). Demineralized teeth were bisected and polished. The specimens were observed with confocal laser scanning microscope. The depth of outer lesion and the thickness of inhibition zone were measured. Remained twenty teeth(n=5) were bisected for fluoride uptake analysis. The fluoride analysis were taken at enamel-restoration interface and dentin-restoration interface by electron probe micro-analyzer. The results are as follows: 1. The depth of outer lesion of Fuji Filling $LC^{TM}$ Dyract AP, Beautifil II was shallower than that of $Filtek^{TM}$ Z250 at the margin of restoration(p<0.05). 2. The thickness of caries inhibition zone of Fuji Filling $LC^{TM}$, Dyract AP, Beautifil II was greater than that of $Filtek^{TM}$ Z250 at the margin of restoration(p<0.05). 3. Fuji Filling $LC^{TM}$, Dyract AP, Beautifil II groups showed the greater fluoride uptake into enamel and dentine around restoration than $Filtek^{TM}$ Z250 group. 4. In dentin the difference of fluoride concentration were greater than in enamel, and Dyract AP showed the greatest fluoride concentration in dentin.

A Study on the Wind Ventilation Forest Planning Techniques for Improving the Urban Environment - A Case Study of Daejeon Metropolitan City - (도시환경 개선을 위한 바람길숲 조성 계획기법 개발 연구 - 대전광역시를 사례로 -)

  • Han, Bong-Ho;Park, Seok-Cheol;Park, Soo-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.28-41
    • /
    • 2023
  • The objective of the study was to develop an Urban Windway Forest Creation Planning Technique for the Improvement of the Urban Environment using the case of Daejeon Metropolitan City. Through a spatial analysis of fine dust and heat waves, a basin zone, in which the concentration was relatively serious, was derived, and an area with the potential of cold air flow was selected as the target area for the windway forest development by analyzing the climate and winds in the relevant zone. Extreme fine dust areas included the areas of the Daejeon Industrial Complex Regeneration Business District in Daedeok-gu and Daedeok Techno Valley in Yuseong-gu. Heat wave areas included the areas of Daedeok industrial Complex in Moksang-dong, the Daejeon Industrial Complex Regeneration Business District in Daehwa-dong, and the high-density residential area in Ojeong-dong. As a result of measuring the wind speeds in Daejeon with an Automatic Weather System, the average wind speeds during the day and night were 0.1 to 1.7 m/s,, respectively. So, a plan of for a windway forest that smoothly induces the movement of cold air formed in outer forests at night is required. The fine dust/heat wave intensive management zones of Daejeon Metropolitan City were Daejeoncheon, Yudeungcheon, Gapcheon-Yudeungcheon, and Gapcheon. The windway forest formation plan case involved the old city center of Daejeon Metropolitan City among the four zones, the Gapcheon-Yudeungcheon area, in which the windway formation effect was presumed to be high. The Gapcheon-Yudeungcheon area is a downtown area that benefits from the cold and fresh air generated on Mt. Gyejok and Mt. Wuseong, which are outer forests. Accordingly, the windway forest was planned to spread the cold air to the city center by connecting the cold air generated in the Seosa-myeon forest of Mt. Gyejok and the Namsa-myeon forest of Mt. Wuseong through Gapcheon, Yudeungcheon, and street forests. After selecting the target area for the wind ventilation forest, a climate map and wind formation function evaluation map were prepared for the area, the status of variation wind profiles (night), the status of fine dust generation, and the surface temperature distribution status were grasped in detail. The wind ventilation forest planning concept and detailed target sites by type were identified through this. In addition, a detailed action plan was established according to the direction of creation and setting of the direction of creation for each type of wind ventilation forest.