• Title/Summary/Keyword: Outdoor thermal environment

Search Result 168, Processing Time 0.031 seconds

A Study on Cooling System for Efficiency Improvements of 3kW Outdoor Type Photovoltaic Inverter (3kW급 옥외형 태양광 인버터의 효율개선을 위한 냉각시스템 연구)

  • Kim, Min-Seok;Park, Eui-Jong;Kim, Yong-Jae;Oh, Bo-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.5
    • /
    • pp.617-624
    • /
    • 2014
  • Recently, photovoltaic inverter is received attention in photovoltaic with introduction of feed-in tariff. However, this inverter has problems such as inability to respond flexible at climate change due to its opening, and decrease of efficiency and lifetime due to its abnormal operation. To solve the problem, we desire to develop the eco-inverter which has a temperature control to respond easily on the change of temperature, and use the sealed structure not to affect the environment. In addition, we derive the optimal position of cooling system which is placed inside of inverter to minimize the power consumption, and proposed the effective measure to improve the efficient of inverter by deciding the number of cooling system.

Optimal tree location model considering multi-function of tree for outdoor space - considering shading effect, shielding, openness of a tree - (옥외공간에서 수목의 다기능을 고려한 최적의 배식 위치 선정 모델 - 수목의 그림자 효과, 시야차단, 개방성을 고려하여 -)

  • Park, Chae-Yeon;Lee, Dong-Kun;Yoon, Eun-Joo;Mo, Yong-Won;Yoon, June-Ha
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • Open space planners and designers should consider scientific and quantified functions of trees when they have to locate where to plant the tree. However, until now, most planners and designers could not consider them because of lack of tool for considering scientific and quantitative tree functions. This study introduces a tree location supporting tool which focuses on the multi-objective including scientific function using ACO (Ant colony optimization). We choose shading effect (scientific function), shielding, and openness as objectives for test application. The results show that when the user give a high weight to a particular objective, they can obtain the optimal results with high value of that objective. When we allocate higher weight for the shading effect, the tree plans provide larger shadow value. Even when compared with current tree plan, the study result has a larger shading effect plan. This result will reduce incident radiation to the ground and make thermal friendly open space in the summer. If planners and designers utilize this tool and control the objectives, they would get diverse optimal tree plans and it will allow them to make use of the many environmental benefits from trees.

Effects of Temperature and Light Intensity on the Growth of Red Pepper(Capsicum annuum L.) in Plastic House During Winter. I. Fluctuations of Temperature and Light Environment in the Multilayered Plastic House Grown Red Pepper (동계 Plastic house내 고추(Capsicum annuum L.) 육묘시 온도와 광도가 생장에 미치는 영향 I. 다중피복 고추육묘 시설내의 온도 및 광환경 영향)

  • 정순주;이범선;권용웅
    • Journal of Bio-Environment Control
    • /
    • v.3 no.2
    • /
    • pp.106-118
    • /
    • 1994
  • This study was conducted to analyze the effects of fluctuations in temperature, light intensity and soil temperature on the growth of red pepper seedlings in the nonheated plastic houses with various number of layers and in the open field. Relationship between the optimal environment and the growth of seedlings was discussed, and the maximum and minimum outdoor temperatures in Kwangju area from 1941 to 1985 were analyzed. The results obtained were as follows; 1. The minimum temperature in tunnel with quadruple coverings of P. E. film from December 20 to February 25 was decreased to 5$^{\circ}C$ mostly, where the exposure to chilling temperature could not be avoided during this period. The maximum temperature was increased to 33$^{\circ}C$ mostly and 42$^{\circ}C$ in peak, where some ventilation was needed. 2. The diurnal differences of inside temperature, increasing with number of layers, were 16 to 38$^{\circ}C$, while those of outside temperature were 5 to 1$0^{\circ}C$. 3. The cold injury in the quadruple coverings during winter occurred all the times below 12$^{\circ}C$ and as many as 200 times over 3$0^{\circ}C$, while effectiveness of thermal insulation in the multilayered nonheating plastic houses were clearly proved. 4. The inside light intensity was markedly reduced with the increment of layers and the minimum light intensity fallen down below the light compensation point for the growth of red pepper plants regardless of the number of layers. 5. Until 10 a. m., the temperature in the daytime during December 20 to mid - February showed below 10 to 12$^{\circ}C$ which was the limiting temperature for the growth of red pepper seedlings. After 4 p. m., the light intensity was sharply reduced despite of the air temperature kept over 12$^{\circ}C$. Therefore, limiting factors for the growth of red pepper seedlings were the temperature before 10 a. m. and the light intensity after 4 p. m. 6. The minimum soil temperature in quadruple coverings showed around 1$0^{\circ}C$ where the physiological damage for red pepper seedlings might be occurred. 7. The minimum outdoor temperatures from 1941 to 1985 was -19.4$^{\circ}C$, observed in the 5th January.

  • PDF

Analysis on the Characteristics of Ventilation and Cooling for Greenhouses Constructed in Reclaimed Lands (간척지 온실의 환기 및 냉방 특성 분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The purpose of this study was to provide basic data for development of environmental design technology for greenhouses constructed in reclaimed lands. The climatic conditions around seven major reclaimed land areas with a plan to install advanced horticultural complexes in Korea were analyzed. The characteristics of natural ventilation and temperature rise through the thermal environment measurement of the greenhouse in Saemangeum were analyzed. The part to be applied to the environmental design of the greenhouses in reclaimed lands were reviewed. Results of comparing the ventilation rate of the greenhouse according to the presence or absence of plants showed the greenhouse with plants had the lower ventilation rate, but the smaller rise of indoor temperature due to the evapotranspiration of plants. In the greenhouse with plants, the number of air changes was in the range of 0.3 to 0.9 volumes/min and the average was 0.7 volumes/min. The rise of indoor temperature relative to outdoor temperature was in the range of 1 to $5^{\circ}C$ and the average $2.5^{\circ}C$. The natural ventilation performance of the experimental greenhouse constructed in the reclaimed land almost satisfied the recommended ventilation rate in summer and the rise of indoor temperature relative to outdoor temperature did not deviate considerably from the cultivation environment of plants. Therefore, it was determined that the greenhouse cultivation in Saemangeum reclaimed land is possible with only natural ventilation systems without cooling facilities. As the reclaimed land is located in the seaside, the wind is stronger than the inland area, and the fog is frequent. This strong wind speed increases the ventilation rate of greenhouses, which is considered to be a factor for reducing the cooling load. In addition, since the fog duration is remarkably longer than that of inland area, the seasonal cooling load is expected to decrease, which is considered to be advantageous in terms of the operation cost of cooling facilities.

A Study of the Urban Tree Canopy Mean Radiant Temperature Mitigation Estimation (도시림의 여름철 평균복사온도 저감 추정 연구)

  • An, Seung Man;Son, Hak-gi;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.1
    • /
    • pp.93-106
    • /
    • 2016
  • This study aimed to estimate and evaluate the thermal mitigation of the urban tree canopy on the summer outdoor environment by quantitative use of mean radiant temperature. This study applied the SOLWEIG model based $T_{mrt}$ comparison method by using both (1) urban tree canopy presence examples and (2) urban tree canopy absence examples as constructed from airborne LiDAR system based three-dimensional point cloud data. As a result, it was found that an urban tree canopy can provide a decrease in the entire domain averaged daily mean $T_{mrt}$ about $5^{\circ}C$ and that the difference can increase up to $33^{\circ}C$ depending both on sun position and site conditions. These results will enhance urban microclimate studies such as indices (e.g., wind speed, humidity, air temperature) and biometeorology (e.g., perceived temperature) and will be used to support forest based public green policy development.

Experimental Study on the Fire Performance of PC Slab by the Bearing Length (걸침길이에 따른 PC 슬래브의 화재성능에 관한 실험적 연구)

  • Park, Siyoung;Kang, Thomas H.K.;Lee, Ho-Wook;Gwak, Si-Young;Park, Jun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.14-22
    • /
    • 2022
  • In this study, a fire test was conducted to evaluate the fire performance of precast concrete (PC) slabs in an outdoor environment in response to the increase in fire incidents caused by the growth of warehouses. Prior to the field fire test, the tensile yield strength of the tendon at elevated temperatures was tested to analyze the mechanical properties. Also, by referring to previous studies, the thermal properties of tendon and the mechanical and thermal properties of concrete were investigated. A field fire test was conducted to analyze the structural and fire performance of two identical slabs with 50 and 150 mm bearing length. As the bearing length increased, deflection and horizontal displacement decreased. The fire test lasted for 200 minutes without the collapse of slabs, validating current codes. Based on the structural performance which maintained even with concrete spalling and rupture of some tendons, the bonded method is assumed to be practical in pre-tensioned PC slabs. The results of fire test are expected to be utilized in evaluating the fire performance of PC slabs in warehouses.

Experimental Performance Validation of an Unmanned Surface Vessel System for Wide-Area Sensing and Monitoring of Hazardous and Noxious Substances (HNS 광역 탐지 및 모니터링을 위한 부유식 무인이동체 시스템의 실험적 성능 검증)

  • Jinwook Park;Jinsik Kim;Jinwhan Kim;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.11-17
    • /
    • 2022
  • In this study, we address the development of a floating platform system based on a unmanned surface vessel for wide-area sensing and monitoring of hazardous and noxious substances (HNSs). For long endurance, a movable floating platform with no mooring lines was used and modified for HNS sensing and monitoring. The floating platform was equipped with various sensors such as optical and thermal imaging cameras, marine radar, and sensors for detecting HNSs in water and air. Additionally, for experiment validation in real outdoor environments, a portable gas-exposure system (PGS) was built and installed on the monitoring system. The software for carrying out the mission was integrated with the Robot Operating System (ROS) framework. The practical feasibility of the developed system was verified through experimental tests conducted in inland water and real-sea environments.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF