• Title/Summary/Keyword: Outdoor Navigation

Search Result 105, Processing Time 0.019 seconds

A Study on the Development of Indoor Spatial Data Model Using CityGML ADE (CityGML ADE를 이용한 실내공간 데이터모델 개발에 관한 연구)

  • Kang, Hye Young;Hwang, Jung Rae;Lee, Ji Yeong
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.11-21
    • /
    • 2013
  • W ith the recent increasing build and application for 3D spatial information, the importance of management and application for spatial information based on indoor space has been increased. Especially, Due to the increasing of the scale and complexity of the building according to the development of construction technologies several studies have been conducted to provide the services based on indoor space such as indoor navigation for disaster. Therefore, to efficient manage and service for information of complicated indoor space, it is necessary to extend and develop 3D spatial model and services that have been developed for outdoor space. In this paper, Indoor Spatial Data Model(ISDM) is developed to support building spatial information for complicated indoor space and location based services through topological information. ISDM contains a feature model which is a CityGML Application Domain Extension(ADE) model and a topology model that refers the IndoorGML.

Development of an Autonomous Guide Robot for Campus Tour (캠퍼스 자율 안내로봇 개발)

  • Lim, Jong Hwan;Kim, Hee Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.543-551
    • /
    • 2017
  • A campus guide robot was developed that can autonomously guide people through a university campus. The robot is able to evaluate its location using Differential Global Positioning System (DGPS) and Dead-Reckoning using the encoders mounted on its wheels. The robot can navigate autonomously along a guide route that is set in advance. A new position-based guidance approach was suggested. Unlike the conventional method of setting the guide sequence in advance, the robot acquires guidance by judging whether there is guide information corresponding to its current position. The robot searches guide information from the guide database while it moves along the guide path autonomously. If there is any guide information available around the location of the robot, then it performs guide functions. We also suggested an effective guide scenario that can maximize the interest of people. The performance of the robot was tested through sets of experiments in a true campus environment.

A Low-Cost Portable Precise Position Information Service System Using the DGPS Mechanism (DGPS 개념을 이용한 저가형 이동식 정밀위치 서비스 시스템)

  • Yeoun Hyo-Bum;Kang Yeong-Wook;Lee Ki-Dong
    • The KIPS Transactions:PartC
    • /
    • v.13C no.1 s.104
    • /
    • pp.95-102
    • /
    • 2006
  • Nowadays, GPS is used widely, especially in case which needs precise position information, such as car navigation systems and various kinds of position measuring instruments in an outdoor environment. According to their applications, there are many kinds of GPS receivers with different costs and error rates. The maximum error range of the general-purpose GPS receiver is within 30m, though the error rate depends on receiving rate of signal and weather condition. RTK(Real-Time Kinematic) and DGPS(Differential Global Positioning System) have more precise accuracy than the general-purpose GPS. However end users can't afford use them because of their high price and large size of equipments. In order for the end user to obtain precise position information, it is important that GPS receivers has portability and low price. In this study, we introduce a new system that offers precise position information using the DGPS mechanism satisfying low cost and portability.

Absolute Altitude Determination for 3-D Indoor and Outdoor Positioning Using Reference Station (기준국을 이용한 실내·외 절대 고도 산출 및 3D 항법)

  • Choi, Jong-Joon;Choi, Hyun-Young;Do, Seoung-Bok;Kim, Hyun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.165-170
    • /
    • 2015
  • The topic of this paper is the advanced absolute altitude determination for 3-D positioning using barometric altimeter and the reference station. Barometric altimeter does not provide absolute altitude because atmosphere pressure always varies over the time and geographical location. Also, since Global Navigation Satellites system such as GPS, GLONASS has geometric error, the altitude information is not available. It is the reason why we suggested the new method to improve the altitude accuracy. This paper shows 3-D positioning algorithm using absolute altitude determination method and evaluates the algorithm by real field tests. We used an accurate altitude from RTK system in Seoul as a reference data and acquired the differential value of pressure data between a reference station and a mobile station equipped in low cost barometric altimeter. In addition, the performance and advantage of the proposed method was evaluated by 3-D experiment analysis of PNS and CNS. We expect that the proposed method can expand 2-D positioning system 3-D position determination system simply and this 3-D position determination technique can be very useful for the workers in the field of fire-fighting and construction.

An Efficient Lane Detection Algorithm Based on Hough Transform and Quadratic Curve Fitting (Hough 변환과 2차 곡선 근사화에 기반한 효율적인 차선 인식 알고리즘)

  • Kwon, Hwa-Jung;Yi, June-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3710-3717
    • /
    • 1999
  • For the development of unmanned autonomous vehicle, it is essential to detect obstacles, especially vehicles, in the forward direction of navigation. In order to reliably exclude regions that do not contain obstacles and save a considerable amount of computational effort, it is often necessary to confine computation only to ROI(region of interest)s. A ROI is usually chosen as the interior region of the lane. We propose a computationally simple and efficient method for the detection of lanes based on Hough transform and quadratic curve fitting. The proposed method first employs Hough transform to get approximate locations of lanes, and then applies quadratic curve fitting to the locations computed by Hough transform. We have experimented the proposed method on real outdoor road scene. Experimental results show that our method gives accurate detection of straight and curve lanes, and is computationally very efficient.

  • PDF