• Title/Summary/Keyword: Outdoor Air Cooling system

Search Result 143, Processing Time 0.022 seconds

Temperature characteristics of condenser and evaporator of Air-conditioner applying variable capacity compressor under cooling condition (가변용량 압축기를 적용한 에어컨의 냉방운전 시 응축 및 증발온도 특성)

  • Kwon, Young-Chul;Chun, Chong-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1325-1331
    • /
    • 2007
  • In order to investigate the cooling capacity of an air-conditioner applying a variable capacity compressor and the temperature characteristics on a condenser and an evaporator, the experiment on the operation characteristics of the air-conditioner was performed along a compressor operation ratio and an indoor/outdoor temperatures, under a cooling operation mode. The system characteristics were measured by the psychrometric calorimeter. The cooling capacity increased with decreasing the outdoor temperature and increasing the indoor temperature. Also, it increased with increasing the compressor operation ratio. The temperature of the condenser was more sensitive for the variation of the outdoor temperature and the temperature of the evaporator was more sensitive for the variation of the indoor temperature. The operation characteristics of the cycle used in this present were also analyzed by a pressure-enthalpy chart.

  • PDF

Evaluation of energy efficiency ratio in the mixed air conditioner system (혼합 공조 시스템의 EER(A) 평가)

  • 김병순;이승홍
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.542-548
    • /
    • 1999
  • Instead of testing split air conditioners, an empirically based calculation procedure may be used to estimate the Energy Efficiency Ratio at ARI A test conditions. Typically, the system involving the indoor unit well sold and the given outdoor unit is called the matched system. All other systems involving a given outdoor unit and other indoor units are called the mixed systems. To estimate the EER(A) for the mixed systems, EER(A) for the matched system must be known, Generally, the EER(A) for the matched system is known. This procedure relies on independent measurements and calculations made on an outdoor unit in conjunction with a matched indoor and a mixed indoor coil. A heat pump simulation model was used to quantify the effects of individual system components on the system performance. The procedure is applicable to all air-conditioning units having rated cooling capacities less than 19,000W and charged with refrigerant 22.

  • PDF

An Applicability Analysis of River Water Source Heat Pump System using EnergyPlus Simulation (에너지플러스 시뮬레이션을 통한 하천수 열원 히트펌프 시스템의 적용 가능성 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.2
    • /
    • pp.10-21
    • /
    • 2022
  • A water source heat pump (WSHP) system is regarded as an energy-efficiency heating and cooling supply system for buildings due to its high energy efficiency and low greenhouse gas emissions. Recently, water sources such as river water, lake water, and raw water are attracting attention as heat sources for a heat pump system in Korea. This paper analyzed the applicability of a river water source heat pump system (RSHP). The river water temperature level was compared with the outdoor air and ground temperature levels to present applicability. In addition, the cooling and heating performance were compared through a simulation approach for the RSHP and a ground source heat pump (GSHP) applied to a large-scale office building. To compare the temperature level, the actual data were applied to the river water and the outdoor air, while the simulation results were applied to the ground circulation water. The results showed that the change in river water temperature throughout the year was similar to the change in outdoor air temperature. However, unlike the outdoor air temperature, the difference between the hourly and daily average river water temperatures was not large. The temperature level of river water was lower during the heating season and somewhat higher during the cooling season than that of the ground circulation water. Finally, the performance of the RSHP system was 13.4% lower than that of the GSHP system on an annual-based.

Real Time Near Optimal Control Application Strategy of Central Cooling System (중앙냉방시스템의 실시간 준최적제어 적용에 따른 실험적 연구)

  • Ahn, Byung-Cheon;Song, Jae-Yeob;Joo, Yong-Duk;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.470-477
    • /
    • 2008
  • The near-optimal control algorithm for central cooling system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor cooling load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air and chilled water temperatures. The near optimal control algorithm has been implemented by using LabVIEW program in order to analyze energy performance for central cooling control system.

System Performance with Variation of Outdoor Unit Layouts at Building Re-entrants

  • Koh, Jae-Yoon;Lee, Hyun-Gu;Zhai, John
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • Air-cooled split-type air conditioners (AC) are very popular in high-rise residential and commercial buildings in Korea. The performance of such AC systems varies significantly with system characteristics and environmental conditions. Particularly, the outdoor condensing unit of the system, if poorly cooled due to high density of AC distribution and restricted outdoor space, will result in large decrease of cooling efficiency and increase of electrical energy consumption and may further jeopardize the system reliability. This paper presents a numerical analysis on the thermal and energy performance of a group of air-cooled air conditioners installed at a courtyard of a high-rise building. The study introduces a series of new energy performance indices to assess the group performance of the AC condensers with different outdoor unit layouts. The results not only indicate the COP of the systems, but also quantify the system capacity and energy consumption. The evaluation method and indices developed are useful for guiding the design of the distribution plan of the AC units at building re-entrants.

The Characteristics of a Bypass Air Conditioning System for Load Variation (부하변동에 대한 바이패스 공조시스템의 특성)

  • 김보철;신현준;김정엽
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.240-246
    • /
    • 2002
  • Bypass air conditioning systems are divided into three types; an outdoor air bypass, a mixed air bypass and a return air bypass system. What makes the return air by pass system more effective is that it directs all of moist outdoor air through the cooling coil. The bypass air conditioning system can maintain indoor R.H (Relative Humidity) less than a conventional CAV (Constant Air Volume) air conditioning system by adjusting face and bypass dampers at part load. When a design sensible load (the ratio of sensible load to total sensible load) is 70 percent (at this time, RSHF (Room Sensible Heat Factor) . 0.7), indoor R.H was maintained 59 percent by the return air bypass system, but 65 percent by the conventional CAV air conditioning system (valve control system). The bypass air conditioning system can also improve IAQ (Indoor Air Quality) in many buildings where the number of air change is high.

Evaluation on the Indoor Thermal Environment and Cooling Operation Characteristics of Thermally Activated Building System integrated with Dedicated Outdoor Air System during Cooling Operation in Hot and Humid Climate of Seoul (국내 여름철 기후조건에서 DOAS와 TABS 통합시스템 냉방운전시 실내온열환경 및 운전특성 평가)

  • Lee, YoonSun;Lee, Keo-Re;Chung, Woong June;Lim, Jae-Han
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.45-55
    • /
    • 2018
  • To reduce the energy consumption of HVAC system in buildings, thermally activated building system(TABS) has been applied to low energy building because of energy efficient performance and reduction of peak load. DOAS coupled with a parallel sensible cooling could be promising because TABS handles sensible heat load only. The purpose of this study was to evaluate the indoor thermal environment and cooling operation characteristic of TABS with dedicated outdoor air system(DOAS) in Korea climate. Indoor thermal environment and operation characteristic of TABS integrated with DOAS are investigated at different TABS operation schedules and climate conditions by simulation tests. The result shows that the DOAS is more suitable for hot and humid climates. And also it show that the potential of intermittent operation of TABS.

A Study on Energy Reduction in an Outdoor Air Conditioning System for Semiconductor Manufacturing Cleanrooms Using Water Spray Humidification (반도체 클린룸용 외기공조시스템의 수분무 가습을 이용한 에너지절감에 관한 연구)

  • Song, Won-Il;Kim, Ki-Cheol;Yoo, Kyung-Hoon;Shin, Dae-Kun;Tae, Kyung-Eung;Kim, Yong-Sik;Park, Dug-Jun
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.65-77
    • /
    • 2017
  • In recent large-scale semiconductor manufacturing cleanrooms, the energy consumption in outdoor air conditioning (OAC) systems to heat, humidify, cool and dehumidify outdoor air(OA) represents about 40~50 % of the total cleanroom power consumption required to maintain cleanroom environment. Therefore, the assessment of energy consumption in outdoor air conditioning systems is essential for reducing the outdoor air conditioning load for a cleanroom. In the present study, an experiment with an outdoor air flow rate of $1,000m^3/h$ was conducted to compare the energy consumption in steam humidification, simple air washer, exhaust air heat recovery type air washer and dry cooling coil(DCC) return water heat recovery type air washer OAC systems. Besides, a numerical analysis was carried out to evaluate the annual energy consumption of the aforementioned four OAC systems. It was shown that the simple air washer, exhaust air heat recovery type air washer and DCC return water heat recovery type air washer OAC systems using water spray humidification were more energy-efficient than the steam humidification OAC system. Furthermore the DCC return water heat recovery type air washer OAC system was the most energy-efficient.

A Study on Prediction of Temperature and Humidity for Estimation of Cooling Load (냉방부하 추정을 위한 온도와 습도 예측에 관한 연구)

  • Yoo, Seong-Yeon;Lee, Je-Myo;Han, Kyou-Hyun;Han, Seung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.394-402
    • /
    • 2007
  • To estimate the cooling load for the following day, outdoor temperature and humidity are needed in hourly base. But the meteorological administration forecasts only maximum and minimum temperature. New methodology is proposed for predicting hourly outdoor temperature and humidity by using the forecasted maximum and minimum temperature. The correlations for normalized outdoor temperature and specific humidity has been derived from the weather data for five years from 2001 to 2005 at Seoul, Daejeon and Pusan. The correlations for normalized temperature are independent of date, while the correlations for specific humidity are linearly dependent on date. The predicted results show fairly good agreement with the measured data. The prediction program is also developed for hourly outdoor dry bulb temperature, specific humidity, dew point, relative humidity, enthalpy and specific volume.

Evaluation of the operating reliability on the concurrent heating-cooling system air conditioner for different refrigerant flow rates with high-head and long-line conditions (동시냉난방 시스템 에어컨의 냉매량 변화에 따른 고낙차 장배관 운전 신뢰성 평가)

  • Lee, Seung-Chan;Kim, Tae-An;Tae, Sang-Jin;Jung, Gyoo-Ha;Moon, Je-Myung;Kim, Youn-Jea
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.304-309
    • /
    • 2008
  • The heating and cooling performances of system multi-air conditioner for various refrigerant flow rates with high-head and long-line conditions are experimentally investigated. The maximum head and tube length were 110 m and 1000 m, and the two different adjustments of refrigerant flow rates were +20 % and -20 %, respectively. The experimental system was composed of 4 outdoor units with module systems, and 13 indoor units which were joined with the mode change unit by single-tube circuit. Field tests without indoor and outdoor temperature control were performed in a general office building with two different refrigerant flow rates. Especially, the oil level in the compressor was normally maintained at the safety zone. Experimental results were prepared on the p-h diagram.

  • PDF