• Title/Summary/Keyword: Out-of-sample forecasting

Search Result 54, Processing Time 0.028 seconds

Data-Mining Bootstrap Procedure with Potential Predictors in Forecasting Models: Evidence from Eight Countries in the Asia-Pacific Stock Markets

  • Lee, Hojin
    • East Asian Economic Review
    • /
    • v.23 no.4
    • /
    • pp.333-351
    • /
    • 2019
  • We use a data-mining bootstrap procedure to investigate the predictability test in the eight Asia-Pacific regional stock markets using in-sample and out-of-sample forecasting models. We address ourselves to the data-mining bias issues by using the data-mining bootstrap procedure proposed by Inoue and Kilian and applied to the US stock market data by Rapach and Wohar. The empirical findings show that stock returns are predictable not only in-sample but out-of-sample in Hong Kong, Malaysia, Singapore, and Korea with a few exceptions for some forecasting horizons. However, we find some significant disparity between in-sample and out-of-sample predictability in the Korean stock market. For Hong Kong, Malaysia, and Singapore, stock returns have predictable components both in-sample and out-of-sample. For the US, Australia, and Canada, we do not find any evidence of return predictability in-sample and out-of-sample with a few exceptions. For Japan, stock returns have a predictable component with price-earnings ratio as a forecasting variable for some out-of-sample forecasting horizons.

Forecasting the Baltic Dry Index Using Bayesian Variable Selection (베이지안 변수선택 기법을 이용한 발틱건화물운임지수(BDI) 예측)

  • Xiang-Yu Han;Young Min Kim
    • Korea Trade Review
    • /
    • v.47 no.5
    • /
    • pp.21-37
    • /
    • 2022
  • Baltic Dry Index (BDI) is difficult to forecast because of the high volatility and complexity. To improve the BDI forecasting ability, this study apply Bayesian variable selection method with a large number of predictors. Our estimation results based on the BDI and all predictors from January 2000 to September 2021 indicate that the out-of-sample prediction ability of the ADL model with the variable selection is superior to that of the AR model in terms of point and density forecasting. We also find that critical predictors for the BDI change over forecasts horizon. The lagged BDI are being selected as an key predictor at all forecasts horizon, but commodity price, the clarksea index, and interest rates have additional information to predict BDI at mid-term horizon. This implies that time variations of predictors should be considered to predict the BDI.

Volatility Forecasting of Korea Composite Stock Price Index with MRS-GARCH Model (국면전환 GARCH 모형을 이용한 코스피 변동성 분석)

  • Huh, Jinyoung;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.429-442
    • /
    • 2015
  • Volatility forecasting in financial markets is an important issue because it is directly related to the profit of return. The volatility is generally modeled as time-varying conditional heteroskedasticity. A generalized autoregressive conditional heteroskedastic (GARCH) model is often used for modeling; however, it is not suitable to reflect structural changes (such as a financial crisis or debt crisis) into the volatility. As a remedy, we introduce the Markov regime switching GARCH (MRS-GARCH) model. For the empirical example, we analyze and forecast the volatility of the daily Korea Composite Stock Price Index (KOSPI) data from January 4, 2000 to October 30, 2014. The result shows that the regime of low volatility persists with a leverage effect. We also observe that the performance of MRS-GARCH is superior to other GARCH models for in-sample fitting; in addition, it is also superior to other models for long-term forecasting in out-of-sample fitting. The MRS-GARCH model can be a good alternative to GARCH-type models because it can reflect financial market structural changes into modeling and volatility forecasting.

Bivariate long range dependent time series forecasting using deep learning (딥러닝을 이용한 이변량 장기종속시계열 예측)

  • Kim, Jiyoung;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.69-81
    • /
    • 2019
  • We consider bivariate long range dependent (LRD) time series forecasting using a deep learning method. A long short-term memory (LSTM) network well-suited to time series data is applied to forecast bivariate time series; in addition, we compare the forecasting performance with bivariate fractional autoregressive integrated moving average (FARIMA) models. Out-of-sample forecasting errors are compared with various performance measures for functional MRI (fMRI) data and daily realized volatility data. The results show a subtle difference in the predicted values of the FIVARMA model and VARFIMA model. LSTM is computationally demanding due to hyper-parameter selection, but is more stable and the forecasting performance is competitively good to that of parametric long range dependent time series models.

UC Model with ARIMA Trend and Forecasting U.S. GDP (ARIMA 추세의 비관측요인 모형과 미국 GDP에 대한 예측력)

  • Lee, Young Soo
    • International Area Studies Review
    • /
    • v.21 no.4
    • /
    • pp.159-172
    • /
    • 2017
  • In a typical trend-cycle decomposition of GDP, the trend component is usually assumed to follow a random walk process. This paper considers an ARIMA trend and assesses the validity of the ARIMA trend model. I construct univariate and bivariate unobserved-components(UC) models, allowing the ARIMA trend. Estimation results using U.S. data are favorable to the ARIMA trend models. I, also, compare the forecasting performance of the UC models. Dynamic pseudo-out-of-sample forecasting exercises are implemented with recursive estimations. I find that the bivariate model outperforms the univariate model, the smoothed estimates of trend and cycle components deliver smaller forecasting errors compared to the filtered estimates, and, most importantly, allowing for the ARIMA trend can lead to statistically significant gains in forecast accuracy, providing support for the ARIMA trend model. It is worthy of notice that trend shocks play the main source of the output fluctuation if the ARIMA trend is allowed in the UC model.

Forecasting Short-term Electricity Prices in South Korean Electricity Market (한국전력시장에서의 단기전력가격 예측)

  • Chae, Yeoung-Jin;Kim, Doo-Jung;Kim, Eun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.83-85
    • /
    • 2008
  • The authors develop and compare the performance of short-term forecasting models on electricity market prices in Korea. The models are based on time-series methods. The outcome shows that the EGARCH model has the best results in the out-of-sample forecasts.

  • PDF

Estimation and Forecasting of Dynamic Effects of Price Increase on Sales Using Panel Data (패널자료를 이용한 가격인상에 따른 판매량의 동적변화 추정 및 예측)

  • Park Sung-Ho;Jun Duk-Bin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.2
    • /
    • pp.157-167
    • /
    • 2006
  • Estimating the effects of price increase on a company's sales is important task faced by managers. If consumer has prior information on price increase or expects it, there would be stockpiling and subsequent drops in sales. In addition, consumer can suppress demand in the short run. These factors make the sales dynamic and unstable. In this paper we develop a time series model to evaluate the sales patterns with stockpiling and short-term suppression of demand and also propose a forecasting procedure. For estimation, we use panel data and extend the model to Bayesian hierarchical structure. By borrowing strength across cross-sectional units, this estimation scheme gives more robust and reasonable result than one from the individual estimation. Furthermore, the proposed scheme yields improved predictive power in the forecasting of hold-out sample periods.

The forecasting evaluation of the high-order mixed frequency time series model to the marine industry (고차원 혼합주기 시계열모형의 해운경기변동 예측력 검정)

  • KIM, Hyun-sok
    • The Journal of shipping and logistics
    • /
    • v.35 no.1
    • /
    • pp.93-109
    • /
    • 2019
  • This study applied the statistically significant factors to the short-run model in the existing nonlinear long-run equilibrium relation analysis for the forecasting of maritime economy using the mixed cycle model. The most common univariate AR(1) model and out-of-sample forecasting are compared with the root mean squared forecasting error from the mixed-frequency model, and the prediction power of the mixed-frequency approach is confirmed to be better than the AR(1) model. The empirical results from the analysis suggest that the new approach of high-level mixed frequency model is a useful for forecasting marine industry. It is consistent that the inclusion of more information, such as higher frequency, in the analysis of long-run equilibrium framework is likely to improve the forecasting power of short-run models in multivariate time series analysis.

International Inflation Synchronization and Implications

  • CHON, SORA
    • KDI Journal of Economic Policy
    • /
    • v.42 no.2
    • /
    • pp.57-84
    • /
    • 2020
  • This study analyzes global inflation synchronization and derives policy implications for the Korean economy. Unlike previous studies that assume a single global inflation factor, this study investigates if inflation in Korea can be explained further by other global inflation factors. Our principal component analysis provides three principal components for global inflation that are linked to the Korea inflation rate - the first component is closely related to OECD inflation, and the second and third components reflect China's inflation. This study empirically demonstrates via in-sample fitting and out-of-sample forecasting that the three principal components of global inflation play a significant role in explaining and predicting Korean inflation in the short-term, while their role is limited in the mid-term. Domestic macroeconomic variables are found to be more important for the mid-term movements of the Korean inflation rate. The empirical results here suggest that the Bank of Korea should focus more on domestic economic conditions than on global inflation when implementing monetary policy because global factors are likely to be already reflected in domestic macro-variables in the mid-term.

Towards high-accuracy data modelling, uncertainty quantification and correlation analysis for SHM measurements during typhoon events using an improved most likely heteroscedastic Gaussian process

  • Qi-Ang Wang;Hao-Bo Wang;Zhan-Guo Ma;Yi-Qing Ni;Zhi-Jun Liu;Jian Jiang;Rui Sun;Hao-Wei Zhu
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.267-279
    • /
    • 2023
  • Data modelling and interpretation for structural health monitoring (SHM) field data are critical for evaluating structural performance and quantifying the vulnerability of infrastructure systems. In order to improve the data modelling accuracy, and extend the application range from data regression analysis to out-of-sample forecasting analysis, an improved most likely heteroscedastic Gaussian process (iMLHGP) methodology is proposed in this study by the incorporation of the outof-sample forecasting algorithm. The proposed iMLHGP method overcomes this limitation of constant variance of Gaussian process (GP), and can be used for estimating non-stationary typhoon-induced response statistics with high volatility. The first attempt at performing data regression and forecasting analysis on structural responses using the proposed iMLHGP method has been presented by applying it to real-world filed SHM data from an instrumented cable-stay bridge during typhoon events. Uncertainty quantification and correlation analysis were also carried out to investigate the influence of typhoons on bridge strain data. Results show that the iMLHGP method has high accuracy in both regression and out-of-sample forecasting. The iMLHGP framework takes both data heteroscedasticity and accurate analytical processing of noise variance (replace with a point estimation on the most likely value) into account to avoid the intensive computational effort. According to uncertainty quantification and correlation analysis results, the uncertainties of strain measurements are affected by both traffic and wind speed. The overall change of bridge strain is affected by temperature, and the local fluctuation is greatly affected by wind speed in typhoon conditions.