• 제목/요약/키워드: Out-of-plane vibration

검색결과 194건 처리시간 0.021초

실내소음 저감을 위한 능동패널의 체속도 제어 (Volume Velocity Control of Active Panel to Reduce Interior Noise)

  • 김인수
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.33-41
    • /
    • 1999
  • This paper presents a method of actively controlling the interior noise by a trim panel with hybrid feedforward-feedback control loop. The control technique is designed to minimize the vibration of panel whose motion is limited to that of a piston (out-of-plane motion). The hybrid controller consists of an adaptive feedforward controller in conjunction with a linear quadratic Gaussian (LQG) feedback controller. In order to maintain control performance of both persistent and transient disturbances, the feedback loop speeds up the adaptation rate of feedforward controller by improving damping capacity of secondary plant related with the adaptation rule. Numerical simulation and experimental result indicate that the hybrid controller is a more effective method for reducing the vibration of the panel (and therefore the interior noise) compared to using feedforward controller.

  • PDF

ESPI를 이용한 평판의 Nodal Pattern 해석 (Nodal pattern analysis of plane plate by using ESPI)

  • 김경석;정현철;양승필;김정호;이도윤;김태열;김형택
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.377-383
    • /
    • 1996
  • Recently, a new technique called Electronic Speckle Pattern Inteferometry(ESPI) has been developed to overcome the drawbacks of existing holography. This technique enable real-time interference fringes to be displayed directly on TV monitor without recourse to any form of photographic processing. This research was carried out for the purpose of applying the vibration analysis method employing Electronic Speckle Pattern Interference technique to the vibration analysis of uniform rectangular cantilever plate, The natural vibration frequencies found by ESPI were in fair agreement with theoretical eigen frequencies acquired using theoretical formula G. B. Warburton proposed.

  • PDF

An assumed-stress hybrid element for static and free vibration analysis of folded plates

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.405-421
    • /
    • 2007
  • A four-node hybrid stress element for analysing orthotropic folded plate structures is presented. The formulation is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. The proposed element has six degree of freedom per node and permits an easy connection to other type of elements. An equilibrated stress field in each element and inter element compatible boundary displacement field are assumed independently. Static and free vibration analyses of folded plates are carried out on numerical examples to show that the validity and efficiency of the present element.

보강재의 운동으로 인한 보강판의 연성진동 (Coupled Vibration of Stiffened Plates due to Motion of Stiffeners)

  • 이현엽
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.153-159
    • /
    • 1997
  • In a stiffened plate reinforced on one of its sides by beam type stiffeners, the asymmetry about the plate mid-plane induces coupling between flexural wave and longitudinal wave. In this research interactions between flexural and longitudinal wave motion are analyzed in a stiffened plate which is reinforced only in one direction. The plate is modelled as a beam to which offset spring-mounted masses are attached at regular intervals. Propagation constants of the coupled waves and corresponding characteristic waves are derived by using periodic structure theory, and a computer code is developed. Also, sample calculations are carried out and the results are discussed.

  • PDF

Vibration analysis of laminated plates with various boundary conditions using extended Kantorovich method

  • Singhatanadgid, Pairod;Wetchayanon, Thanawut
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.115-136
    • /
    • 2014
  • In this study, an extended Kantorovich method, employing multi-term displacement functions, is applied to analyze the vibration problem of symmetrically laminated plates with arbitrary boundary conditions. The vibration behaviors of laminated plates are determined based on the variational principle of total energy minimization and the iterative Kantorovich method. The out-of-plane displacement is represented in the form of a series of a sum of products of functions in x and y directions. With a known function in the x or y directions, the formulation for the variation of total potential energy is transformed to a set of governing equations and a set of boundary conditions. The equations and boundary conditions are then numerically solved for the natural frequency and vibration mode shape. The solutions are verified with available solutions from the literature and solutions from the Ritz and finite element analysis. In most cases, the natural frequencies compare very well with the reference solutions. The vibration mode shapes are also very well modeled using the multi-term assumed displacement function in the terms of a power series. With the method used in this study, it is possible to solve the angle-ply plate problem, where the Kantorovich method with single-term displacement function is ineffective.

Buckling and vibration behavior of a non-uniformly heated isotropic cylindrical panel

  • Bhagata, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.543-567
    • /
    • 2016
  • This study attempts to address the buckling and free vibration characteristics of an isotropic cylindrical panel subjected to non-uniform temperature rise using numerical approach. Finite element analysis has been used in the present study. The approach involves three parts, in the first part non-uniform temperature field is obtained using heat transfer analysis, in the second part, the stress field is computed under the thermal load using static condition and, the last part, the buckling and pre-stressed modal analysis are carried out to compute critical buckling temperature as well as natural frequencies and associated mode shapes. In the present study, the effect of non-uniform temperature field, heat sink temperatures and in-plane boundary constraints are considered. The relation between buckling temperature under uniform and non-uniform temperature fields has been established. Results revealed that decrease (Case (ii)) type temperature variation field influences the fundamental buckling mode shape significantly. Further, it is observed that natural frequencies under free vibration state, decreases as temperature increases. However, the reduction is significantly higher for the lowest natural frequency. It is also found that, with an increase in temperature, nodal and anti-nodal positions of free vibration mode shapes is shifting towards the location where the intensity of the heat source is high and structural stiffness is low.

레이저 다이오드를 이용한 정현적 위상변조 간섭계에 대한 연구 (A study on Sinusoidal Phase Modulating interferometer using laser diode)

  • 표기영;박낙규;이근영;강영준;김경석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.926-929
    • /
    • 2005
  • Recently, laser interferometer is widely used as a measuring system in many fields because of its high resolution and its ability to measure a board area in real-time ail at once. In conventional laser interferometer, for examples Out of plane ESPI, In plane ESPI, Shearography and Holography, it uses PZT or other components as a phase shift instrumentation to extract 3-D deformation data, vibration mode and others. However, in most cases PZT has some disadvantages, which include noli-linear errors and limited time of use. In present study, a new type of laser interferometer using a laser diode(LD) is proposed. Using Laser Diode Sinusoidal Phase Modulating(LD-SPM) interferometer, the phase modulation can be directly modulated by controlling the LD injection current thereby eliminating the need for PZT components.

  • PDF

Free vibration analysis of Bi-Directional Functionally Graded Beams using a simple and efficient finite element model

  • Zakaria Belabed;Abdeldjebbar Tounsi;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohamed Bourada;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • 제90권3호
    • /
    • pp.233-252
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

마그네사이트의 적외선 흡수 스펙트럼 해석 (Analysis of the Infrared Absorption Spectrums of Magnesite)

  • 오기동
    • 한국세라믹학회지
    • /
    • 제14권4호
    • /
    • pp.226-229
    • /
    • 1977
  • The infrared absorption spectrum of Synthesized magnesite is shown in the wve number region 2510 and 745cm-1. By using Wilson's GF matrices the force constants' of the Urey-Bradley force field were deterined from the infrared absorption frequencies. For magnesite the stretching force constant K=5.41, the bending force constant H=0.46, the repulsive force constant F=1.97, and the force constant for the out-of-plane vibration fθ=0.65md/Å. For calcite they are K=5.51, H=0.38, F=1.88 and fθ=0.64md/Å.

  • PDF

레이저 스페클간섭법에 있어서 스페클크기와 측정 한계에 관한 연구 (A study on speckle size and measurable limitations in laser speckle interferometry method)

  • 윤성운
    • 한국생산제조학회지
    • /
    • 제5권1호
    • /
    • pp.33-42
    • /
    • 1996
  • The high coherence of laser beam has made it possible to observe interference effects even in the light scattered from rough surfaces. That's why, when object with a scattering surface is illuminated with laser light, we do see a speckled appearance due to random interference. This sort of unique property of laser speckle has bruht into existence the new noncontaciting techniques such as speckle metrology method of measuring deformation, displacement, and vibration etc of objects with high optical sensitivity. The measurable range of speckle metrology especially used to measure in -plane information, however, is limited by some factors, the so-called strain, rotation tilt of surface and out of displacement perpendicular to the plane of analysis This restrictions severly limits the measurable range of speckle metrology by causing the decorrelation of speckle patterns. It is the purpose of this paper to give a survey on the measurable limitation of speckle photography method that is one of speckle metrology. Namely we will discuss the mutual relationships and problems of each limitations adding the restriction on the largest and smallest displacement measurable with speckle methods.

  • PDF