• Title/Summary/Keyword: Out-of-plane propagating wave

Search Result 8, Processing Time 0.028 seconds

Energy flow analysis of out-of-plane vibration in coplanar coupled finite Mindlin plates

  • Park, Young-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.174-194
    • /
    • 2015
  • In this paper, an Energy Flow Analysis (EFA) for coplanar coupled Mindlin plates was performed to estimate their dynamic responses at high frequencies. Mindlin plate theory can consider the effects of shear distortion and rotatory inertia, which are very important at high frequencies. For EFA for coplanar coupled Mindlin plates, the wave transmission and reflection relationship for progressing out-of-plane waves (out-of-plane shear wave, bending dominant flexural wave, and shear dominant flexural wave) in coplanar coupled Mindlin plates was newly derived. To verify the validity of the EFA results, numerical analyses were performed for various cases where coplanar coupled Mindlin plates are excited by a harmonic point force, and the energy flow solutions for coplanar coupled Mindlin plates were compared with the classical solutions in the various conditions.

Energy flow finite element analysis of general Mindlin plate structures coupled at arbitrary angles

  • Park, Young-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.435-447
    • /
    • 2019
  • Energy Flow Finite Element Analysis (EFFEA) is a promising tool for predicting dynamic energetics of complicated structures at high frequencies. In this paper, the Energy Flow Finite Element (EFFE) formulation of complicated Mindlin plates was newly developed to improve the accuracy of prediction of the dynamic characteristics in the high frequency. Wave transmission analysis was performed for all waves in complicated Mindlin plates. Advanced Energy Flow Analysis System (AEFAS), an exclusive EFFEA software, was implemented using $MATLAB^{(R)}$. To verify the general power transfer relationship derived, wave transmission analysis of coupled semi-infinite Mindlin plates was performed. For numerical verification of EFFE formulation derived and EFFEA software developed, numerical analyses were performed for various cases where coupled Mindlin plates were excited by a harmonic point force. Energy flow finite element solutions for coupled Mindlin plates were compared with the energy flow solutions in the various conditions.

Active Noise Control of the Plane Wave Travelling in a Duct Using Filtered-x LMS Algorithm (Filtered-x LMS 알고리즘을 응용한 덕트내 평면파 소음의 능동제어)

  • 우재학;김인수;이정권;김광준
    • Journal of KSNVE
    • /
    • v.2 no.2
    • /
    • pp.107-116
    • /
    • 1992
  • An adaptive signal processing technique is implemented for the active noise cancellation of the plane acoustic wave propagating in a duct. To avoid the instability caused by the acoustic feedback from the control speaker to the detect microphone, an off-line modeling of the acoustic feedback plant is done using the FIR filter. Auxiliary path required for the filtered-x LMS algorithm is modeled as well. Before going into the experiments, a simulation is carried out under the same conditions with experiments. The simulation shows that the longer the length of the adaptive filter is, the better the results are achieved. Experiments have been carried out at lower audio frequency range (50 - 400Hz), and the results are in good agreements with those of simulation study. As a results of this adaptive noise control, around 50dB is reduced for a pure tone noise, and for a bandlimited noise with the bandwidth of 316Hz, a maximum of 30dB noise reduction is attained.

  • PDF

Asymmetric Mean Metallicity Distribution of the Milky Way's Disk

  • An, Deokkeun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.49.1-49.1
    • /
    • 2019
  • I present the mean metallicity distribution of stars in the Milky Way based on photometry from the Sloan Digital Sky Survey. I utilize an empirically calibrated set of stellar isochrones developed in previous work to estimate the metallicities of individual stars to a precision of 0.2 dex for reasonably bright stars across the survey area. I also obtain more precise metallicity estimates using priors from the Gaia parallaxes for relatively nearby stars. Close to the Galactic mid-plane (|Z| < 2 kpc), a mean metallicity map reveals deviations from the mirror symmetry between the northern and southern hemispheres, displaying wave-like oscillations. The observed metallicity asymmetry structure is almost parallel to the Galactic mid-plane, and coincides with the previously known asymmetry in the stellar number density distribution. This result reinforces the previous notion of the plane-parallel vertical waves propagating through the disk, which have been excited by a massive halo substructure such as the Sagittarius dwarf galaxy plunging through the Milky Way's disk. This work provides evidence that the Gaia phase-space spiral may continue out to |Z| ~ 1.5 kpc.

  • PDF

Influence of ground motion spatial variations and local soil conditions on the seismic responses of buried segmented pipelines

  • Bi, Kaiming;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.663-680
    • /
    • 2012
  • Previous major earthquakes revealed that most damage of the buried segmented pipelines occurs at the joints of the pipelines. It has been proven that the differential motions between the pipe segments are one of the primary reasons that results in the damage (Zerva et al. 1986, O'Roueke and Liu 1999). This paper studies the combined influences of ground motion spatial variations and local soil conditions on the seismic responses of buried segmented pipelines. The heterogeneous soil deposits surrounding the pipelines are assumed resting on an elastic half-space (base rock). The spatially varying base rock motions are modelled by the filtered Tajimi-Kanai power spectral density function and an empirical coherency loss function. Local site amplification effect is derived based on the one-dimensional wave propagation theory by assuming the base rock motions consist of out-of-plane SH wave or combined in-plane P and SV waves propagating into the site with an assumed incident angle. The differential axial and lateral displacements between the pipeline segments are stochastically formulated in the frequency domain. The influences of ground motion spatial variations, local soil conditions, wave incident angle and stiffness of the joint are investigated in detail. Numerical results show that ground motion spatial variations and local soil conditions can significantly influence the differential displacements between the pipeline segments.

Incoherent Inverse Scattering of 3-Dimensional Underground Cavity in Lossy Medium (손실 매질내에 있는 3차원 지하공동의 Incoherent 역산란)

  • 홍성용;강진섭
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.378-391
    • /
    • 1999
  • When the time-harmonic plane wave is incident upon a high-contrast spherical cavity in a lossy medium, the incoherent shadow intensity pattern is acquired by averaging out the multi-frequency intensities of the co-polarized total electric field calculated at the measurement plane perpendicular to the propagating direction of the incident wave in the forward direction. In the spherical rotational measurement configuration, an incoherent imaging of the spherical cavity is obtained via the back-projections of the incoherent shadow intensity pattern. This imaging method is validated by imaging an air sphere in the lossy medium of ${\epsilon}_r$ = 2 and $\sigma$ = 0.001, 0.003 S/m and the conditions for obtaining better images are investigated.

  • PDF

Neaushore sedimentary environments of the Sinyangri Fornation in Cheju Island, Korea (제주도 신양리층의 연안퇴적환경)

  • 한상준;윤호일
    • 한국해양학회지
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 1987
  • The Sinyangri Formation crops out in the vicinity of the Seongsan Peninsula, Cheju Island. Based on sedimentary structures, texture and composition, the lithologic sequence has been classified, in ascending stratigraphic order, into three lithofacies: parallel laminated sandstone facies (Facies I): conglomerate facies(Facies Il); and cross stratified sandstone facies (F acies Ill). Wedge-to-parallel, seaward-inclined in low angle less than 10$^{\circ}$lamina -sets with alternations of coarseand fine-grained sediments in the Facies I are the characteristic sedimentary structures in the foreshore depositional environment. Grains of this faciesare well sorted with good roundness compared with the other two facies, partly showing inverse graded bedding. Facies II,largely composed of claset-supported,very poorly-sorted conglomerates,does not pinch out but occurs continuously along the Sinyangri beach.Interstitial spaces between the clasts are mostly infilled with volcanic-ash and small amounts of well-rounded shell fragments.Maximum bed thickness as well as the size of imbedded basaltic clasts decreases to the south(toward Sinyangri). Large clasts with parallel lamination originated from the underlying Facies i,are generally elongated parallel to the bedding plane and display no systematic horizontal variations in size indicative of in-situ clasts.In view of the facts above it seems that large gravels from the basaltic rocks are transgressive lag conglomerates which are partly affected by the combination of longshore currents and propagating wave.Local occurrence of cross-strata dipping toward the south in the upper part of Facies IIreinforces the evidence of the action of longshore currents. Facies IIIis characterized by bidirectional trough cross-starifiction and wave ripples associated with the upper shoreface(surfzone) environments.In summary,the Sinyangri Formation represents the depositional environments of foreshore to upper shoreface truncated by disconformity between Facies Iand II.

  • PDF

Evaluation of Ultrasonic Nonlinear Characteristics in Heat-Treated Aluminum Alloy (열처리된 알루미늄 합금의 초음파 비선형 특성 평가)

  • Kim, JongBeom;Cheon, Chung;Jhang, Kyung-Young;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.193-197
    • /
    • 2013
  • In this study, ultrasonic nonlinear characteristics in the heat-treated aluminum alloy have been evaluated. The nonlinearity of ultrasonic wave has been measured as the acoustic nonlinear parameter ${\beta}$, depending upon the amplitude ratio of the second-order harmonic and the fundamental frequency component of ultrasonic wave propagating through the materials. The parameter ${\beta}$ measurement has been carried out with the reflected signals from the back-wall of specimens at the same plane using the contact-type transducers. The heat-treatment, aging, has been achieved at $300^{\circ}C$ for various durations in the range of 1 to 50 hours. The tensile strength and elongation are obtained by the tensile test and then compared with the parameter ${\beta}$. There is a peak of the acoustic nonlinear parameter ${\beta}$ on 5 hours aging and the ${\beta}$ decreases thereafter, exhibiting closed relations with tensile strength and elongation. Also, the heat-treatment time showing peak in the parameter ${\beta}$ was identical to that showing severe change in the ${\sigma}-{\varepsilon}$ curve. These results suggest that the acoustic nonlinear parameter ${\beta}$ can be used for monitoring the strength variations with aging of aluminum alloys.