• 제목/요약/키워드: Out-of-plane ESPI

검색결과 42건 처리시간 0.024초

직사각형 평판의 진동모드 해석에 관한 ESPI의 적용성 평가 (Applicability estimation of ESPI on the vibration mode analysis of rectangular plate)

  • 김경석;정현철;박경주;양승필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.61-67
    • /
    • 1997
  • The electronic speckle pattern interferometer (ESPI) has been applied to many technical problems such as deformation and displacement measurement, strain visualization and surface roughness monitoring. In this study, we used an ESPI system based on the dual beam speckle interferometer method in order to measure in-plane displacement and vibration mode using the ESIP technique. This research was carried out for the purpose of applying the vibration analysis method employing Electro-Optic holographic interference technique to the vibration analysis of uniform rectangular cantilevers plate(SS400,STS304) with cantilevers span to breadth ratio of 150 by 75. And thickness of 1mm and 0.8mm respectively. We improved the ESPI technique in order to obtain the distribution of displacement component resolved in one direction through a CCD camera combined with an image processing system. To certify and to assess the accuracy in measuring by this ESPI, the results obtained with the speckle method and vibration mode analysis are to be compared with those results by Warbuton's Theoretical expression and vibration made in FEM analysis.

  • PDF

ESPI를 이용한 자동차 TPS 면외변형 계측 (Out-of-Plane Deformation Measurement of TPS in Vehicle Using ESPI)

  • 한상길;함효식;함상현;이종황;정원욱;이창희;이상봉;최성을
    • 비파괴검사학회지
    • /
    • 제30권5호
    • /
    • pp.423-428
    • /
    • 2010
  • 본 논문에서는 ESPI 방법을 이용하여 자동차 엔진의 핵심 부품인 TPS의 열변형력에 따른 변외변형을 측정하여 열변형 특성을 분석하였다. 높은 해상도의 CCD와 줌렌즈를 사용하여 부품의 검사영역을 가로 세로 각각 5cm로 최소화하였다. 주행거리가 다른 TPS 부품들을 4-step 위상이동법과 위상 연속화를 통해 변형량이 연속적으로 변하는 위상도를 얻었고, 3차원으로 변형의 모양과 크기를 나타내었다. 약 $70^{\circ}C$의 온도를 유지하면서 TPS 부품에 열을 가한 경우 주행거리가 길어질수록 TPS 변형은 크게 측정되었고, 위로 볼록한 형태로 변형되었다. 그리고 내부결함이 있는 부품에서는 위상도에 불연속적인 무늬가 나타났고, 아래로 오목한 모양을 갖는 변형으로 나타났다.

Modulating Laser를 이용한 ESPI System algorithm 개발에 관한 연구 (Research about ESPI System Algorithm Development that Use Modulating Laser)

  • 김성종;강영준;박낙규;이동환
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.65-72
    • /
    • 2009
  • Laser interferometry is widely used as a measuring system in many fields because of its high resolution and its ability to measure a broad area in real-time all at once. In conventional laser interferometry, for example out-of-plane ESPI (Electronic Speckle Pattern Interferometry), in plane ESPI, shearography and holography, it uses PZT or other components as a phase shift instrumentation to extract 3-D deformation data, vibration mode and others. However, in most cases PZT has some disadvantages, which include nonlinear errors and limited time of use. In the present study, a new type of laser interferometry using a laser diode is proposed. Using Laser Diode Sinusoidal Phase Modulating (LD-SPM) interferometry, the phase modulation can be directly modulated by controlling the laser diode injection current thereby eliminating the need for PZT and its components. This makes the interferometry more compact. This paper reports on a new approach to the LD (Laser Diode) Modulating interferometry that involves four-frame phase shift method. This study proposes a four-frame phase mapping algorithm, which was developed to have a guaranteed application, to stabilize the system in the field and to be a user-friendly GUI. In this paper, the theory for LD wavelength modulation and sinusoidal phase modulation of LD modulating interferometry is shown. Using modulating laser and research of measurement algorithm does comparison with existent ESPI measurement algorithm. Algorithm measures using GPIB communication through most LabVIEW 8.2. GPIB communication does alteration through PC. Transformation of measurement object measures through modulating laser algorithm that develops. Comparison of algorithm of modulating laser developed newly with existent PZT algorithm compares transformation price through 3-D. Comparison of 4-frame phase mapping, unwrapping, 3-D is then introduced.

광학적 비접촉 측정에 의한 구조물 해석의 화상처리 계측 시스템 개발에 관한 연구 (A Study on the Development of Image Processing Measurement System on the Structural Analysis by Optical Non-contact Measurement)

  • 김경석
    • 한국생산제조학회지
    • /
    • 제8권6호
    • /
    • pp.78-83
    • /
    • 1999
  • This study discusses a non-contact optical technique, electronic speckle pattern interformetry(ESPI), that is well suited for in-plane and out-of-plane deformation measurement. However, the existing ESPI methods that are based on dual-exposure, real-time and time-average method have difficulties for accurate measurement of structure, due to irregular intensity and shake of phase. Therefore, phase shifting method has been proposed in order to solve this problem. About the method, the path of reference light in interferometry is shifted and added to least square fitting method to make the improvement in distinction and precision. This proposed method is applied to measure in -plane displacement that is compared with the previous method. Also, Used as specimen AS4/PE따 [30/=30/90]s was analyzed by ESPI based on real-time to determine the characteristics of vibration under no-load and tension. These results are quantitatively compared with those of FEM analysis inmode shapes.

  • PDF

Nondestructive Testing of Residual Stress on the Welded Part of Butt-welded A36 Plates Using Electronic Speckle Pattern Interferometry

  • Kim, Kyeongsuk;Jung, Hyunchul
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.259-267
    • /
    • 2016
  • Most manufacturing processes, including welding, create residual stresses. Residual stresses can reduce material strength and cause fractures. For estimating the reliability and aging of a welded structure, residual stresses should be evaluated as precisely as possible. Optical techniques such as holographic interferometry, electronic speckle pattern interferometry (ESPI), Moire interferometry, and shearography are noncontact means of measuring residual stresses. Among optical techniques, ESPI is typically used as a nondestructive measurement technique of in-plane displacement, such as stress and strain, and out-of-plane displacement, such as vibration and bending. In this study, ESPI was used to measure the residual stress on the welded part of butt-welded American Society for Testing and Materials (ASTM) A36 specimens with $CO_2$ welding. Four types of specimens, base metal specimen (BSP), tensile specimen including welded part (TSP), compression specimen including welded part (CSP), and annealed tensile specimen including welded part (ATSP), were tested. BSP was used to obtain the elastic modulus of a base metal. TSP and CSP were used to compare residual stresses under tensile and compressive loading conditions. ATSP was used to confirm the effect of heat treatment. Residual stresses on the welded parts of specimens were obtained from the phase map images obtained by ESPI. The results confirmed that residual stresses of welded parts can be measured by ESPI.

모듈레이팅 레이저를 이용한 ESPI 시스템 개발 (Development of ESPI System Using a Modulating LASER)

  • 이근영;강영준;박낙규;이동환
    • 한국정밀공학회지
    • /
    • 제25권3호
    • /
    • pp.93-100
    • /
    • 2008
  • Laser interferometry is widely used as a measuring system in many fields because of its high resolution and ability to measure a broad area in real-time all at once. In conventional LASER interferometry, for example Out-of-plane ESPI(Electronic Speckle Pattern Interferometry), In plane ESPI, Shearography and Holography, it uses PZT or other components as a phase shift instrumentation to extract 3D deformation data, vibration mode and others. However, in most cases PZT has some disadvantages, which include nonlinear errors and limited time of use. In the present study, a new type of LASER interferometry using a laser diode is proposed. Using LASER Diode Sinusoidal Phase Modulating (LD-SPM) interferometry, the phase modulation can be directly modulated by controlling the LASER Diode injection current thereby eliminating the need for PZT and its components. This makes the interferometry more compact. This paper reports on a new approach to the LD Modulating interferometry that involves four-buckets phase shift method. This study proposes a four-bucket phase mapping algorithm, which was developed to have a guaranteed application, to stabilize the system in the field and to be a user-friendly GUI. In this paper, the theory for LD wavelength modulation and sinusoidal phase modulation of LD modulating interferometry is shown. Four-bucket phase mapping algorithm is then introduced.

ESPI를 이용한 구면 안경렌즈의 면외 변형 측정 (Out-of-plane Deformation Measurement of Spherical Glasses Lens Using ESPI)

  • 양승필;김경석;장호섭;김현민
    • 한국안광학회지
    • /
    • 제12권4호
    • /
    • pp.77-81
    • /
    • 2007
  • 구면 렌즈는 굴절력에 따라 크게 (+)디옵터와 (-)디옵터 렌즈로 구분할 수 있다. 렌즈에 가해지는 외력에 의해 발생되는 변형은 디옵터의 증가 또는 감소에 따라 다르게 발생된다. 본 논문에서는 수년간 광계측 분야에서 널리 사용되고 있는 ESPI를 이용하여 렌즈에 발생되는 변형을 정량적으로 측정 하였다. ESPI(Electronic Speckle Pattern Interferometry: ESPI)는 빛의 가간섭성을 이용하여 대상물의 변형을 비접촉으로 정밀하게 측정할 수 있다는 장점을 지니고 있다. 실험은 총 16종의 플라스틱 안경 렌즈를 대상으로 수행 하였다. 동일한 변위를 주었을 때, (+)렌즈는 디옵터가 증가함에 따라 변형량이 감소하고, (-)렌즈의 경우 (+)디옵터 렌즈와는 반대로 디옵터가 감소함에 따라 변형량이 증가한다는 것을 확인 하였다. 또한 (+)디옵터 렌즈가 (-)디옵터 렌즈에 비해 상대적으로 변형량이 적게 발생한 사실을 알 수 있었다. 따라서 본 논문의 결과는 다양한 렌즈에 외부 변위가 가해지는 경우 렌즈의 변형에 의한 광학적 결함 등을 정량적으로 측정 할 수 있는 가능성을 제시하고 렌즈 산업 분야에 다양하게 응용 될 것으로 기대된다.

  • PDF

Analysis of an Inside Crack of Pressure Pipeline Using ESPI and Shearography

  • Kim, Kyung-Suk;Kang, Ki-Soo
    • 비파괴검사학회지
    • /
    • 제22권6호
    • /
    • pp.643-648
    • /
    • 2002
  • In this study, shearography and ESPI have been used for quantitative analysis of an inside crack of pipeline and both of them appeared suitable to qualitatively detect inside crack. However, shearography needs several effective factors including the amount of shearing, shearing direction and induced load for the quantitative evaluation of the inside crack. In this study, the factors were optimized for the quantitative analysis and the site of cracks has been determined. Although the effective factors in shearography has been optimized, it is difficult to determine the factors exactly because they are related to the details of tracks. On the other hand, ESPI is independent on the details of a crack and only the induced load plays an important role. The out-of-plane displacement was measured under the optimized load and the measured were numerically differentiated, which resulted in an equivalent to the shearogram. The size of cracks can be determined quantitatively without any detail of a crack.