• 제목/요약/키워드: Out-of-Plane Motion

검색결과 165건 처리시간 0.027초

단일 진동체의 진동 흡진기 설계 기법 (Design of a Vibration Absorber for an Elastically Suspended Rigid Body)

  • 김동욱;최용제
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.190-197
    • /
    • 2002
  • A new design methodology is presented for the multi-degree-of-freedom vibration absorber for an elastically suspended rigid body with planes of symmetry in general motion. Unlike the common single degree-of-freedom vibration absorber, the presented methodology makes use of both linear and rotational properties of the absorber. It is suggested that an absorber is designed separately for the in-plane and out-of-plane vibration modes and thereby combined the two cases for a six-degree-of-freedom absorber. The nine possible design methods are suggested for the six-degree-of-freedom absorber when an elastically suspended rigid body has one, two, or three planes of symmetry.

  • PDF

단일 진동체의 진동 흡진기 설계 기법 (Design of a Vibration Absorber for an Elastically Suspended Rigid Body)

  • Kim, Dong-Wook;Park, Yong-Je
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.325.2-325
    • /
    • 2002
  • A new methodology is presented for the multi-degree-of-freedom vibration absorber for an elastically suspended rigid body with the planes of symmetry in general motion. Unlike the common single degree-of-freedom vibration absorber, the presented methodology makes use of both linear and rotational properties of the absorber. It is suggested that an absorber is designed separately for the in-plane and out-of-plane axes of vibration and combined the two cases for a six-degree-of-freedom absorber. (omitted)

  • PDF

Side Slip Angle Based Control Threshold of Vehicle Stability Control System

  • Chung Taeyoung;Yi Kyongsu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.985-992
    • /
    • 2005
  • Vehicle Stability Control (VSC) system prevents vehicle from spinning or drifting out mainly by braking intervention. Although a control threshold of conventional VSC is designed by vehicle characteristics and centered on average drivers, it can be a redundancy to expert drivers in critical driving conditions. In this study, a manual adaptation of VSC is investigated by changing the control threshold. A control threshold can be determined by phase plane analysis of side slip angle and angular velocity which is established with various vehicle speeds and steering angles. Since vehicle side slip angle is impossible to be obtained by commercially available sensors, a side slip angle is designed and evaluated with test results. By using the estimated value, phase plane analysis is applied to determine control threshold. To evaluate an effect of control threshold, we applied a 23-DOF vehicle nonlinear model with a vehicle planar motion model based sliding controller. Controller gains are tuned as the control threshold changed. A VSC with various control thresholds makes VSC more flexible with respect to individual driver characteristics.

TV음악쇼 LED모션그래픽 조형이미지 구성 연구 (A Study on LED Motion Graphic Formative Image on TV Music Show)

  • 오호준
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권5호
    • /
    • pp.823-834
    • /
    • 2015
  • 본 연구는 TV음악쇼 프로그램에서 가수 등의 공연자를 중심으로 배경 디스플레이로 사용되는 LED백드롭(backdrop)의 모션그래픽 이미지 조형구성을 분석하였다. 모션그래픽 LED 화면은 평면조형으로 구성되는데, 백드롭의 배경으로써의 기능이 공감각과 시각요소의 감성전달이라는 목표가 있는 것이므로, 감성전달 요소가 되는 컬러와 모션 방향과 속도에 대한 감성적 개념을 분석하였다. 감성전달 요소 중 그래픽 조형에 대한 분석으로는, 이를 이루는 형의 종류와 응용요소를 구분하고 그러한 요소들이 음악 곡의 전개인 인트로, 벌스, 브릿지, 코러스 부분에서 어떠한 모션 패턴과 배치가 이루어지는지 그리고 남성과 여성 공연자의 배경으로써 어떠한 디자인 특징이 있는지 연구하였다. 사례연구로, 모션그래픽 배경이미지 디자인이 활발히 이루어지는 지상파TV 3사의 청소년 대상 음악 순위프로그램을 대상으로 하였으며, 곡 전개에 따라 주로 디자인 되는 조형의 종류와 모션 패턴 그리고 모션 배치 유형을 도출하였다.

해상용 부유식 풍력 발전기의 파고와 파주기에 따른 비정상 공력 특성 연구 (Unsteady Aerodynamic Characteristics of Floating Offshore Wind Turbine According to Wave Height and Wave Angular Frequency)

  • 전민우;김호건;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.184.1-184.1
    • /
    • 2010
  • Floating wind turbines have been suggested as a feasible solution for going further offshore into deeper waters. However, floating platforms cause additional unsteady motions induced by wind and wave conditions, so that it is difficult to predict annual energy output of wind turbines by using conventional power prediction method. That is because sectional inflow condition on a rotor plane is varied by unsteady motion of floating platforms. Therefore, aerodynamic simulation using Vortex Lattice Method(VLM) were used to investigate the influence of motion on the aerodynamic performance of a floating offshore wind turbine. Simulation with individual motion of offshore platform were compared to the case of onshore platform and carried out according to the wave height and the wave angular frequency.

  • PDF

터렛계류된 FPSO의 비선형 운동 해석 (Nonlinear Motion Analysis of FPSO with Turret Mooring System)

  • 임춘규;이호영
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.161-166
    • /
    • 2002
  • As offshore oil fields move towards the deep ocean, the oil production systems such as FPSO are being built these days. Generally, the FPSO is moored by turret mooring lines to keep the position of FPSO. Thus nonlinear motion analysis of moored FPSO must be carried out in the initial design stage because sea environments affect motion of it. In this paper the mathematical model is based on the slow motion maneuvering equations in the horizontal plane considering wave, current and wind forces. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical model of MMG. The turret mooring forces are quasi-statically evaluated by using the catenary equation. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A. The nonlinear motions of FPSO are simulated under external forces due to wave, current, wind including mooring forces in time domain.

  • PDF

Evaluation of the added mass for a spheroid-type unmanned underwater vehicle by vertical planar motion mechanism test

  • Lee, Seong-Keon;Joung, Tae-Hwan;Cheon, Se-Jong;Jang, Taek-Soo;Lee, Jeong-Hee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권3호
    • /
    • pp.174-180
    • /
    • 2011
  • This paper shows added mass and inertia can be acquired from the pure heaving motion and pure pitching motion respectively. A Vertical Planar Motion Mechanism (VPMM) test for the spheroid-type Unmanned Underwater Vehicle (UUV) was compared with a theoretical calculation and Computational Fluid Dynamics (CFD) analysis in this paper. The VPMM test has been carried out at a towing tank with specially manufactured equipment. The linear equations of motion on the vertical plane were considered for theoretical calculation, and CFD results were obtained by commercial CFD package. The VPMM test results show good agreement with theoretical calculations and the CFD results, so that the applicability of the VPMM equipment for an underwater vehicle can be verified with a sufficient accuracy.

거리 함수를 이용한 로보트의 시변 장애물 회피 동작계획 (Robot motion planning for time-varying obstacle avoidance using distance function)

  • 전흥주;고낙용;남윤석;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1034-1039
    • /
    • 1991
  • A robot motion planning algorithm for time-varying obstacle avoidance is proposed. The robot motion planning problem is replaced with the optimization problem by using the distance function with the divided configuration space. To divide the configuration space, the polar coordinate system is used. For each divided configuration space, the admissible region where the robot can reach without collisions is obtained using the distance function. For an object moving in a plane, the admissible region is described by linear constraints on the polar coordinate system. A numerical algorithm that solves the optimization problem is shown and the computer simulation is carried out.

  • PDF

플렉셔 힌지 기반 6-자유도 초정밀 위치 결정 스테이지의 기구학 해석 (Kinematic Analysis of a 6-DOF Ultra-Precision Positioning Stage Based on Flexure Hinge)

  • 신현표;문준희
    • 한국정밀공학회지
    • /
    • 제33권7호
    • /
    • pp.579-586
    • /
    • 2016
  • This paper describes kinematic analysis of a 6-degrees-of-freedom (DOF) ultra-precision positioning stage based on a flexure hinge. The stage is designed for processes which require ultra-precision and high load capacities, e.g. wafer-level precision bonding/assembly. During the initial design process, inverse and forward kinematic analyses were performed to actuate the precision positioning stage and to calculate workspace. A two-step procedure was used for inverse kinematic analysis. The first step involved calculating the amount of actuation of the horizontal actuation units. The second step involved calculating the amount of actuation of the vertical actuation unit, given the the results of the first step, by including a lever hinge mechanism adopted for motion amplification. Forward kinematic analysis was performed by defining six distance relationships between hinge positions for in-plane and out-of-plane motion. Finally, the result of a circular path actuation test with respect to the x-y, y-z, and x-z planes is presented.

능동음향진동제어를 위한 센서와 액추에이터의 동위치화 연구 (Collocation of Sensor and Actuator for Active Control of Sound and Vibration)

  • 이영섭
    • 한국소음진동공학회논문집
    • /
    • 제14권3호
    • /
    • pp.253-263
    • /
    • 2004
  • The problem considered in this paper is about the collocation of sensor and actuator for the active control of sound and vibration. It is well-known that a point collocated sensor-actuator pair offers an unconditional stability with very high performance when it is used with a direct velocity feedback (DVFB) control, because the pair has strictly positive real (SPR) property. In order to utilize this SPR characteristics, a matched piezoelectric sensor and actuator pair is considered. but this pair suffers from the in-plane motion coupling problem with the out-of-plane motion due to the piezo sensor and actuator interaction. This coupling phnomenon limits the stability and performance of the matched pair with DVFBcontrol. As a new alternative, a point sensor and distributed piezoelectric actuator pair is also considered, which provides SPR property in all frequency range when the pair is implemented on a clamped-clapmed beam. The use of this sensor-actuator pair is highly expected for the applications to more practical active control of sound and vibration systems with the DVFB control strategy.