• Title/Summary/Keyword: Out-of-Plane

Search Result 1,970, Processing Time 0.027 seconds

Characteristics of c-axis oriented sol-gel derived ZnO films (C-축으로 정렬된 sol-gel ZnO 박막의 특성)

  • 김상수;장기완;김인성;송호준;박일우;이건환;권식철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.2
    • /
    • pp.49-55
    • /
    • 2001
  • ZnO films were fabricated on p-type Si(100) wafer ITO glass and quartz glass by the sol-gel process using zinc acetate dihydrate as starting material. A homogeneous and stable solution was prepared by dissolving the zinc acetate dihydrate in a solution of 2-methoxyethanol and monoethanolamine (MEA). ZnO films were deposited by spin-coating at 2800 rpm for 25 s and were dried on a hot plate at $250^{\circ}C$ for 10 min. Crystallization of the films was carried out at $400^{\circ}C$~$800^{\circ}C$ for 1 h in air. X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), UV-vis transmittance spectroscopy, FTIR transmittance spectroscopy and Photoluminescence (PL) spectroscopy measurements have been used to study the structural and optical properties of the films. ZnO films highly oriented along the (002)plane were obtained. In all cases the films were found to be transparent (above 70%) in visible range with a sharp absorption edge at wavelengths of about 380nm, which is very close to the intrinsic band-gap of ZnO(3.2 eV). The low temperature band-edge photoluminescence revealed a complicated multi-line structure in terms of bound exciton complexes and the phonon replicas.

  • PDF

Development of 2.5D Photon Dose Calculation Algorithm (2.5D 광자선 선량계산 알고리즘 개발)

  • 조병철;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.103-114
    • /
    • 1999
  • In this study, as a preliminary study for developing a full 3D photon dose calculation algorithm, We developed 2.5D photon dose calculation algorithm by extending 2D calculation algorithm to allow non-coplanar configurations of photon beams. For this purpose, we defined the 3d patient coordinate system and the 3d beam coordinate system, which are appropriate to 3d treatment planning and dose calculation. and then, calculate a transformation matrix between them. For dose calculation, we extended 2d "Clarkson-Cunningham" model to 3d one, which can calculate wedge fields as well as regular and irregular fields on arbitrary plane. The simple Batho's power-law method was implemented as an inhomogeneity correction. We evaluated the accuracy of our dose model following procedures of AAPM TG#23; radiation treatment planning dosimetry verifications for 4MV of Varian Clinac-4. As results, PDDs (percent depth dose) of cubic fields, the accuracy of calculation are within 1% except buildup region, and $\pm$3% for irregular fields and wedge fields. And for 45$^{\circ}$ oblique incident beam, the deviations between measurements and calculations are within $\pm$4%. In the case of inhomogeneity correction, the calculation underestimate 7% at the lung/water boundary and overestimate 3% at the bone/water boundary. At the conclusions, we found out our model can predict dose with 5% accuracy at the general condition. we expect our model can be used as a tool for educational and research purpose.. purpose..

  • PDF

Size Effect on Flexural Compressive Strength of Reinforced Concrete Beams (철근콘크리트 보의 휨압축강도에 대한 크기효과)

  • 김민수;김진근;이성태;김장호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.934-941
    • /
    • 2002
  • It is important to consider the effect of member size when estimating the ultimate strength of a concrete flexural member because the strength always decreases with an increase of member size. In this study, the size effect of a reinforced concrete (RC) beam was experimentally investigated. For this purpose, a series of beam specimens subjected to four-point loading were tested. More specifically, three different effective depth (d$\approx$15, 30, and 60 cm) reinforced concrete beams were tested to investigate the size effect. The shear-span to depth ratio (a/d=3) and thickness (20 cm) of the specimens were kept constant where the size effect in out-of-plane direction is not considered. The test results are curve fitted using least square method (LSM) to obtain parameters for the modified size effect law (MSEL). The analysis results show that the flexural compressive strength and the ultimate strain decrease as the specimen size increases. In the future study, since $\beta_1$ value suggested by design code and ultimate strain change with specimen size variation, a more detailed analysis should be performed. Finally, parameters for MSEL are also suggested.

Development of a Software to Evaluate the CPES(Cable Penetration Fire Stop) System in Nuclear Power Plane I (원자력발전소 케이블관통부 충전시스템 평가용 소프트웨어 개발 I)

  • 윤종필;권성필;조재규;윤인섭
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2004
  • In this work the dynamic heat transfer occurring in a cable penetration fire stop system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealants. Here was carried out an experiment to observe the heat transfer in the cable penetration fire stop system made of DOW CORNING products. The dynamic heat transfer occurring in the fire stop system is formulated in a parabolic partial differential equation subjected to a set of initial and boundary conditions. And it was modeled, simulated, and analyzed. The simulation results were illustrated in three-dimensional graphics and were compared with experimental data. Through the simulations, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable streams. It also was found that the dynamic heat transfer through the cable streams was one of the most dominant factors, and the feature of heat conduction could be understood as an unsteady-state process. It is certain that these numerical results are useful for making a performance-based design for the cable penetration fire stop system.

Oxidation behavior on the surface of titanium metal specimens at high temperatures (300~1000℃) (고온 (300~1000 ℃)에서 티타늄 금속시편의 표면 산화거동)

  • Park, Yang-Soon;Han, Sun-Ho;Song, Kyuseok
    • Analytical Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.464-470
    • /
    • 2009
  • For the investigation of the oxidation behavior for titanium metal at various temperatures, titanium specimens were heated for 2 hours in the range of $300{\sim}1000^{\circ}C$, individually. And then X-ray diffraction(XRD), scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic analyses were carried out. At $300^{\circ}C$, infrared absorption bands on the surface of the titanium specimen were shown in a spectrum by the oxygen uptake of titanium metal(hexagonal). At increased temperature, not only infrared absorption bands but also X-ray diffraction peaks for the titanium oxide were grown and shifted to low wave number ($cm^{-1}$) and angle($^{\circ}$) due to the more oxygen diffusion into titanium metal. At $700^{\circ}C$, $Ti_3O$ (hexagonal phase) was identified by X-ray diffractometer. $TiO_2$ (rutile, tetragonal phase) layer was produced on the surface of the specimen below $1{\mu}m$ in thickness at $600^{\circ}C$, and grown about $2{\mu}m$ at $700^{\circ}C$ and with $110{\mu}m$ in thickness at $1000^{\circ}C$. Above $900^{\circ}C$, (110) plane of the crystal on the surface of rutile-$TiO_2$ layer was grown.

Calculation of Nuclear Characteristics of the TRIGA Mark-III Reactor (TRIGA Mark-III 원자로의 노심특성계산)

  • Chong Chul Yook;Gee Yang Han;Byung Jin Jun;Ji Bok Lee;Chang Kun Lee
    • Nuclear Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.264-276
    • /
    • 1981
  • A simulation procedure which can represent time-dependent nuclear characteristics of TRIGA Mark-III reactor is developed. CITATION, a multi-group diffusion-depletion program, has been utilized as calculational tool. The group structure employed in this study consists of 7 groups: -3-fast and 4-thermal-which is conventionally utilized in TRIGA type reactor analysis. Three-dimensional nuclear characteristics are synthesized by combining results from two-dimensional plane calculation and two-dimensional cylinder calculation, since direct three-dimensional approach is not yet possible. An effort ia made to develope a method which can extract effective zone and group dependent bucklings by neutron diffusion theory rather than conventional zone and/or group independent Ducklings by neutron transport theory, since neutron leakage is quite high for small core such as research reactors. It is turned out that the method developed in this study gives satisfactory results. The calculation is performed under assumptions that all control rods are fully withdrawn, that no samples are inserted in the irradiation holes and that the core is located in the center of the reactor pool. Burnup-dependent variation of core excess reactivity, time dependent change of Xe-135 poisoning and reactivity worth of rotary specimen rack are calculated and compared with operation records. Neutron flux and power distribution as well as neutron spectrum in each irradiation .facility are presented.

  • PDF

Ferromagnetic Resonance of Amorphous $Co_{1-\chi}Hf_\chi$ Thin Films (비정질 $Co_{1-x}Hf_x$ 박막의 강자성 공명)

  • 백종성;김약연;이성재;임우영;이수형
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.3
    • /
    • pp.129-133
    • /
    • 1997
  • To investigate the influence of the Hf concentration and the annealing effect in $Co_{1-x}Hf_x$(X=0.16, 0.24 at.%) systems, ferromagnetic resonance experiments have been carried out. Spin wave resonance spectra for all samples consist of several volume modes and one (or two) surface mode. It is suggested that both surfaces of the film have a perpendicular hard axis to the film plane (negative surface anisotropy). The surface anisotropy $K_{s2}$ at substrate-film interface is varied slowly from -0.07 to -0.32 erg/$\textrm{cm}^2$ and the surface anisotropy $K_{s1}$ at film-air interface is varied from 0.18 to -0.47 erg/ $\textrm{cm}^2$ with increasing annealing temperature in the amorphous $Co_{84}Hf_{16}$ thin films. Also, the surface anisotropy $K_{s2}$ is varied slowly from -0.31 to -0.41 erg/$\textrm{cm}^2$ and the surface anisotropy $K_{s1}$is varied from -0.19 to -0.60 erg/$\textrm{cm}^2$ with increasing annealing temperature in the amporphous $Co_{84}Hf_{16}$ thin films. We conjecture that the variation of surface anisotropy $K_{s1}$ is due to the increase of Co concentration resulted from Hf oxidation for low temperature annealing(150~175 $^{\circ}C$) and the diffusion of Co atoms near the film surfaces for high temperature annealing (200~225 $^{\circ}C$).

  • PDF

Crystal Structure of Probenecid, $C_{13}H_{19}NO_4S$ (Probenecid, $C_{13}H_{19}NO_4S$의 結晶構造)

  • Kim, Eui-Sung;Shin, Hyun-So
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.603-606
    • /
    • 1991
  • The crystal structure of Probenecid has been determined from 2574 independent reflections collected on an automatic ENRAF-NONIUS CAD-4 diffractometer using graphite-monochromated $Mo-K{\alpa}$ radiation. The crystal is triclinic, space group P$\bar{1}$ with unit cell dimensions a = 7.535(2)${\AA}$, b = 18.473 (5)${\AA}$, c = 5.317(9)${\AA}$, ${\alpha} = 92.00(5)^{\circ}$, ${\beta} = 99.02(5)^{\circ}$, ${\gamma} = 94.89(2)^{\circ}$, V = 727.4(2)${\AA}^3$, Z = 2, $D_m$ = 1.310, $D_x$ = $1.302 gcm^{-3}$, ${\mu}$ = $1.88 cm^{-1}$, F(000) = 304, and T = 298 K. Final R = 0.0676 and $R_w$ = O.0630 for 1209 reflections > 5${\sigma}(F_o)$. In the spacial arrangement about N(13), the sum of bond angles about nitrogen is 350.9° and the nitrogen lies only 0.268(6)${\AA}$ out of S(1)-C(14)-C(17) plane. The S(1)-C(4) distance is 1.792(6)${\AA}$ and the C(4)-S(1)-N(13) angle is $106.5(3)^{\circ}$. The overall conformation of the molecule is folded with respect to sulfur.

  • PDF

Study on Applicability of Stereophotogrammetry to Rock Joint Survey (입체사진측량기법의 암반절리조사에 대한 적용성 연구)

  • Han, Jeong-Hun;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.139-151
    • /
    • 2007
  • Stereophotogrammetry is a method to extract information of an interested area by constructing a stereo-image from two or more photos. In this study, the stereophotogrammetry was adopted to obtain the joint orientation and trace length from a sampling window and its measurements were compared with the result by a clinocompass and measuring tape to evaluate the applicability of the stereophotogrammetry to rock joint survey. A commercial stereophotogrammetry program, ShapeMetriX 3D, was used for this purpose. Firstly, the accuracy of the measuring method using ShpaeMetrix 3D was evaluated by a model test. Secondly, joint orientations on a rock slope and tunnel were obtained by using ShapeMetriX 3D and compared with the measurement by a clinocompass. Finally. the effect of base-depth ratio in photographing was evaluated by comparing images with various base-depth ratios, and the usefulness of closed-up photographing on a rock exposure to increase the measurement accuracy was tested. The dip and dip direction of each model plane obtained by ShapeMetriX 3D showed an error ranged between $-5^{\circ}\;and\; 5^{\circ}$ on the basis of the results by the measuring tape. Base-depth ratio proved not to influence the analysis result by ShapeMetriX 3D if all the images were taken without any hidden area. The close-up photographing turned out useful to obtain the detailed images and therefore precise result when ShapeMetriX 3D was adopted.

Optimum Range Cutting for Packet Classification (최적화된 영역 분할을 이용한 패킷 분류 알고리즘)

  • Kim, Hyeong-Gee;Park, Kyong-Hye;Lim, Hye-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.6
    • /
    • pp.497-509
    • /
    • 2008
  • Various algorithms and architectures for efficient packet classification have been widely studied. Packet classification algorithms based on a decision tree structure such as HiCuts and HyperCuts are known to be the best by exploiting the geometrical representation of rules in a classifier. However, the algorithms are not practical since they involve complicated heuristics in selecting a dimension of cuts and determining the number of cuts at each node of the decision tree. Moreover, the cutting is not efficient enough since the cutting is based on regular interval which is not related to the actual range that each rule covers. In this paper, we proposed a new efficient packet classification algorithm using a range cutting. The proposed algorithm primarily finds out the ranges that each rule covers in 2-dimensional prefix plane and performs cutting according to the ranges. Hence, the proposed algorithm constructs a very efficient decision tree. The cutting applied to each node of the decision tree is optimal and deterministic not involving the complicated heuristics. Simulation results for rule sets generated using class-bench databases show that the proposed algorithm has better performance in average search speed and consumes up to 3-300 times less memory space compared with previous cutting algorithms.