• Title/Summary/Keyword: Out-of-Band Rejection

Search Result 36, Processing Time 0.021 seconds

Design of Phase Locked Dielectric Resonator Oscillator with Low Phase Noise for X-band (저위상잡음을 갖는 X-band용 위상고정 유전체 공진 발진기의 설계 및 제작)

  • 류근관
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.34-40
    • /
    • 2004
  • The PLDRO(Phase-Locked Dielectric Resonator Oscillator) with low phase noise is designed for X-band. The phase of VCDRO(Voltage Controlled Dielectric Resonator Oscillator) is locked to that of a high stable reference oscillator by using a SPD(Sampling Phase Detector) to improve phase noise performance in the loop bandwidth. And, the VCDRO is implemented using a high impedance inverter coupled with dielectric resonator to improve the phase noise performance out of the loop bandwidth. This PLDRO exhibits the harmonic rejection characteristics of 51.67㏈c and requires below 1.95W. The phase noise characteristics are performed as -107.17㏈c/Hz at 10KHz offset frequency and -113.0㏈c/Hz at 100KHz offset frequency, respectively, at ambient. And the output power of 13.0㏈m${\pm}$0.33㏈ is measured over the temperature range of $-20 ∼ +70^{\circ}C$ .

Miniaturization and Rejection-Enhancement of the Bandpass Filter for the T-DMB Application Using a Metamaterial Structure of the Zero-Order Resonator Coupling (Zero-Order Resonator 결합의 Metamaterial 구조를 응용한 T-DMB 대역 통과 여파기의 소형화와 차단 대역 특성의 개선)

  • Shin, Un-Chul;Kahng, Sung-Tek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1462-1469
    • /
    • 2008
  • This paper proposes the design method based on the Composite Right/Left-Handed(CRLH) structure to miniaturize and enhance the rejection performance in the stopband of the bandpass filter for a VHF band($169{\sim}211\;MHz$). For realization, we used the 0-th order resonance point of the CRLH and the simple theory of Inverter as coupling. The proposed technique is validated by the performance predictions and experiments, (Insertion loss <2 dB, $S_{11}$< -15 dB, suppression of up to the 3rd harmonic) and it is found out that the suggested method enables the size reduction of around 60 % from the conventional filters such as the parallel edge coupled type.

Design of Cascaded Lowpass Filter using Combination of Stopbands (저지대역의 중첩을 이용한 캐스캐이드 저역통과 여파기의 설계)

  • 김경훈;김상인;박익모;임한조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.644-652
    • /
    • 2004
  • In this paper, we designed a cascaded microstrip lowpass filter using the lowpass filters previously proposed. The previously proposed lowpass filters have a ultra-wide stopband and prominent cutoff sharpness using the combined characteristics of slot and microstrip open stub, respectively, and they are catagorized into 2 types by the method that determining their passband characteristics. The first type is determined its passband characteristics by open stub characteristics and the second is by slot characteristics. By cascading these structures with impedance adjustment of each element, the deeper out-of-band rejection and the sharper skirt response were achieved. The fabricated cascaded lowpass filters have -3㏈ cutoff frequencies at 1.035㎓ and 1.286㎓ respectively and -20㏈ stopband is over 20㎓ for both structures.

Theoretical Analysis of FBARs Filters with Bragg Reflector Layers and Membrane Layer (브래그 반사층 구조와 멤브레인 구조의 체적 탄성파 공진기 필터의 이론적 분석)

  • Jo, Mun-Gi;Yun, Yeong-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.41-54
    • /
    • 2002
  • In this study, we have analyzed the effects of the membrane layer and the bragg reflector layers on the resonance characteristics through comparing the characteristics of the membrane type FBAR (Film Bulk Acoustic Wave Resonator) and the one type bragg reflector layers with those of the ideal FBAR with top and bottom electrode contacting air by using equivalent circuit technique. It is assumed that ZnO is used for piezoelectric film, $SiO_2$ are used for membrane layer and low acoustic impedance layer, W are used for the high acoustic reflector layer and Al is used for the electrode. Each layer is considered to have a acoustic propagation loss. ABCD parameters are picked out and input impedance is calculated by converting 1-port equivalent circuit to simplified equivalent circuit that ABCD parameters are picked out possible. From the variation of resonance frequency due to the change of thickness of electrode layers, reflector layers and membrane layer it is confirmed that membrane layer and the reflector layer just under the electrode have the greatest effect on the variation of resonance frequency. From the variation of resonance properties, K and electrical Q with the number of layers, K is not much affected by the number of layers but electrical Q increases with the number of layers when the number of layers is less than seven. The electrical Q is saturated when the number of layers is large than six. The electrical Q is dependent of mechanical Q of reflector layers and membrane layer. Both ladder filter and SCF (Stacked Crystal Filters) show higher insertion loss and out-of-band rejection with the increase of the number of resonators. The insertion loss decreases with the increase of the number of reflector layers but the bandwidth is not much affected by the number of reflector layers. Ladder Filter and SCF with membrane layer show the spurious response due to spurious resonance properties. Ladder filter shows better skirt-selectivity characteristics in bandwidth but SCF shows better characteristics in insertion loss.

A Study on the Feeding Structure of the High-Temperature Superconducting Hairpin-comb Filter (고온초전도 헤어핀 콤 여파기의 급전 구조에 관한 연구)

  • Yun, Seok-Sun;Park, Ik-Mo;Min, Byoung-Chul;Choi, Young-Hwan;Moon, Seung-Hyun;Lee, Seung-Min;Oh, Byung-Du
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.12
    • /
    • pp.11-20
    • /
    • 1999
  • We have designed and fabricated direct-and gap-coupled microstrip hairpin-comb filters by patterning double-sided YBCO films on a single 50-mm-diameter, 0.5-mm-thick $LaAlO_3$ wafer. Both filters have a center frequency at 1.773 GHz, 12 MHz bandwidth, 0.5 dB minimum insertion loss in the passband, and very strong out-of- band rejection. Due to two attenuation poles below and above the passband, the direct-coupled hairpin-comb filter showed a better skirt characteristic than the gapcoupled hairpin-comb filter which had only one attenuation pole below the passband.

  • PDF

SOI CMOS Miniaturized Tunable Bandpass Filter with Two Transmission zeros for High Power Application (고 출력 응용을 위한 2개의 전송영점을 가지는 최소화된 SOI CMOS 가변 대역 통과 여파기)

  • Im, Dokyung;Im, Donggu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.174-179
    • /
    • 2013
  • This paper presents a capacitor loaded tunable bandpass chip filter using multiple split ring resonators (MSRRs) with two transmission zeros. To obtain high selectivity and minimize the chip size, asymmetric feed lines are adopted to make a pair of transmission zeros located on each side of passband. Compared with conventional filters using cross-coupling or source-load coupling techniques, the proposed filter uses only two resonators to achieve high selectivity through a pair of transmission zeros. In order to optimize selectivity and sensitivity (insertion loss) of the filter, the effect of the position of asymmetric feed line on transmission zeros and insertion loss is analyzed. The SOI-CMOS switched capacitor composed of metal-insulator-metal (MIM) capacitor and stacked-FETs is loaded at outer rings of MSRRs to tune passband frequency and handle high power signal up to +30 dBm. By turning on or off the gate of the transistors, the passband frequency can be shifted from 4GH to 5GHz. The proposed on-chip filter is implemented in 0.18-${\mu}m$ SOI CMOS technology that makes it possible to integrate high-Q passive devices and stacked-FETs. The designed filter shows miniaturized size of only $4mm{\times}2mm$ (i.e., $0.177{\lambda}g{\times}0.088{\lambda}g$), where ${\lambda}g$ denotes the guided wave length of the $50{\Omega}$ microstrip line at center frequency. The measured insertion loss (S21)is about 5.1dB and 6.9dB at 5.4GHz and 4.5GHz, respectively. The designed filter shows out-of-band rejection greater than 20dB at 500MHz offset from center frequency.