• Title/Summary/Keyword: Out swirl injector

Search Result 30, Processing Time 0.022 seconds

Visualization and Numerical Analysis of Non-evaporating Spray with a Swirl-Type GDI Injector (GDI 와류 분사노즐에 의한 비증발 분무의 가시화 및 수치해석)

  • 원영호;강수구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.22-28
    • /
    • 2003
  • Predictions of the fuel spray dispersion and mixing processes are very important to improve the fuel consumption and exhaust emissions in GDI engines. Numerical and experimental analysis of the sprays with a swirl injector have been conducted. A numerical analysis is carried out using KIVA-II code with modified spray models. Experimental measurements are performed to show the global spray images and the local images near nozzle tip using laser sheet visualization technique. Computed and measured spray characteristics such as spray width, tip penetration are compared, and good agreements can be achieved. The spray head vortex is stronger as the injection pressure increases, but numerical calculations cannot show the head vortex properly.

Cold flow tests of Gas-centered swirl coaxial injectors (Gas-centered swirl coaxial 분사기의 상압수류시험)

  • Jeon, Jae-Hyoung;Hong, Moon-Geun;Kim, Jong-Gyu;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.16-19
    • /
    • 2011
  • An experimental study on the spray characteristics of Gas-centered swirl coaxial injectors(GCSCI) for high-performance staged combustion rocket engines has been carried out using cold flow tests. In this study, water and gaseous nitrogen are used as working fluids and a back-lit photography technique with image processing for the measurements of spray characteristics. Our study is focused on the effect of injector geometries like as gap thickness of liquid nozzle and gas nozzle and momentum flux ratio for fundamental understanding of the injectors.

  • PDF

A Study on the Combustion Stability Evaluation of Double Swirl Coaxial Injector (이중 와류 동축형 분사기의 연소안정성 평가에 관한 연구)

  • ;;;Kim, Hong-Jip;Choe, Hwan-Seok;Lee, Su-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.41-47
    • /
    • 2006
  • A liquid rocket thrust chamber should have a high confidence in its combustion performance and combustion stability. Expecially, the injector of which function is spraying and mixing propellants plays an important role in getting the confidence. This study was carried out to evaluate combustion stability of a double swirl coaxial injector by using the model similarity method. Besides, in case of a baffle which was used to improve combustion stability, the length and gap effects of the baffle were investigated.

Study on the Model Similarity Method for evaluating the Combustion Stability of Coaxial Swirl Injector (동축 와류 분사기의 연소안정성 평가를 위한 모델 상사 기법 연구)

  • Lee Kwang-Jin;Seo Seong-Hyeon;Kim Hong-Jip;Ahn Kyu-Bok;Choi Hwan-Seok;Lee Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.257-263
    • /
    • 2006
  • Liquid rocket combustion chamber must have high confidence in combustion performance and combustion stability. Expecially, an injector playing a part in the mixing of propellants is an important parameter to determine it. The present study was carried out in the viewpoint of combustion stability to evaluate the combustion stability characteristics of Coaxial Swirl Injector, using a model similarity method. Besides, in case of baffle applied to improve combustion stability, the effectiveness getting from changing the axial length and the gap of baffle was investigated.

  • PDF

A Numerical Study on Mixing Characteristics for Recess Length of Swirl Coaxial Injector (스월 동축형 분사기의 리세스 길이에 따른 혼합특성에 관한 수치적 연구)

  • Kim, Young-Jun;Hong, Moon-Geun;Lee, Soo-Yong;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.74-77
    • /
    • 2011
  • A mixing characteristics on recess length change of Gas-centered swirl coaxial injector using high-performance staged combustion rocket engine carry out study through CFD(Computational fluid dynamics). propellant phase that combined gas-liquid simulate gas-gas. In order to measure spreading angle, velocity distribution to injector exit and spray structure of propellant analyzed. Axial velocity increase by increasing recess length, but tangential velocity decrease. The result confirmed qualitative characteristics that the spreading angle decreases.

  • PDF

Combustion Characteristics of Methane-Oxygen Diffusion Flame Formed by Swirl-coaxial Injector (스월 동축형 인젝터에 의해 형성되는 메탄-산소 확산화염의 연소특성)

  • Bae, Seong Hun;Hong, Joon Yeol;Kim, Heuy Dong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • In order to analyze combustion characteristics of methane-oxygen diffusion flame in a model combustor, combustion experiments were carried out under various spray conditions of propellant scrutinizing combustion stability limit and flame shapes. As the propellant approached the theoretical equivalence ratio condition, a stable detached flame was observed even under high oxygen Reynolds number. And the length of the visible flame increased and the lift-off distance of the flame exhibited a tendency toward decrease. Due to the swirl effect of the propellant by the swirl-coaxial injector, a wide and short flame was produced. Thus, it may be appropriate to employ the swirl-coaxial injector in thrusters having a limited physical dimension.

Performance and Ignition Characteristics of a Coaxial Swirl Injector using LOX-$GCH_4$ Propellant (액체산소/기체메탄 추진제를 사용하는 동축형 스월 인젝터의 성능 및 점화특성)

  • Kim, Do-Hun;Lee, In-Chul;Kim, Jin-Kon;Koo, Ja-Ye;Park, Young-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.72-76
    • /
    • 2010
  • To research and develop a high performance injector for LRE, it needs not only cold flow test, but also investigations of combustion performance, optimization of cyclogram and thermo-fluid dynamical characteristics of combustion flow field through hot-fire test. In this study, hot-fire test of LOX-CH4 coaxial swirl injector has been carried out using lab-scale hot fire test stand which can supply and control cryogenic propellant. Ignition and continuous combustion for LOX-$GCH_4$ propellant of 0.19 kg/s total mass flowrate and 2.80 O/F Ratio was achieved through cyclogram optimization. The mean combustion chamber pressure and thrust were measured as approximately 1.43 MPa and 38.7 kgf respectively.

  • PDF

The Design and Hot-firing tests of a Water-cooled High Pressure Sub-scale Combustor (물냉각 고압 축소형 연소기의 설계 및 연소시험)

  • Lee, Kwang-Jin;Kim, Jong-Gyu;Lim, Byoung-Jik;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • A 3-tonf-class high pressure sub-scale combustor was designed and manufactured to study the performance improvement of combustor. The combustor consists of a combustion chamber with film cooling, thermal barrier coating and water cooling channels to prevent thermal demage of the hardware and an injector head with 37 coaxial swirl injectors. Hot-firing tests were carried out at the design point with varying flow rate for film cooling. The test result revealed that the increase of film cooling flow rate decreases the combustion performance, but in the cases of similar film cooling flow rates, the combustion performance is dependent on the mixture ratio of main injector excluding the film cooling flow rate.

Dense Spray Patternation using Optical Tomography

  • Cho, Seongho;Park, Gujeong;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.398-407
    • /
    • 2013
  • Optical tomography was used to measure the pattern of spray cross-section. The maximum-likelihood estimation (MLE) algorithm was used to reconstruct the spray cross-section from the measured transmission rate of the spray. A swirl-type injector was used to form an optically dense spray, and the test was carried out in a high-pressure chamber, to control the pressure condition of the test site. Before the experiment, the reliability of the MLE-based reconstruction algorithm was verified, by comparing it with a conventional filtered back projection reconstruction (FBP) method. The MLE algorithm showed superior reconstruction of the image. In the spray patternation experiment, the results of the optical tomography and optical line patternator, which uses Mie scattering signal information, were compared. While measuring the cross-section of optically dense spray, the intensity of the scattering signal had attenuated to an uncorrectable level, which led to incorrect spray pattern measurement by the optical line patternator. However, reliable results were obtained by optical tomography, under the same condition. Finally, the pattern of the optically dense spray was measured at various chamber pressures, of up to 3 MPa. As the chamber pressure increased, the hollow cone-shaped swirl spray shrank, and the attenuation coefficient value of the inner region increased.

Combustion Optimization of Diesel 2.0 Liter Class Engine with 8-hole Injector Nozzle (8홀 노즐을 적용한 2리터 급 디젤 엔진 연소 최적화)

  • Kwon, Soon-Hyuk;Kim, Min-Su;Choi, Min-Seon;Cho, Sung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.73-79
    • /
    • 2008
  • Atomization speed of diesel fuel injected from 8-hole nozzle is faster than that of 7-hole nozzle because the hole diameter of 8-hole nozzle is smaller than that of 7-hole nozzle. But both insufficient distance between the fuel sprays and short penetration of injected sprays through 8-hole nozzle hole cause many harmful effects on combustion. In this study, we installed the 8-hole injectors to diesel 2.0 liter class engine, and optimized in-cylinder swirl and penetration via selecting and matching proper cylinder head and combustion bowl. Through this process, we found out the performance and emission potential of 8-hole nozzle installed engine are better than those of 7-hole nozzle installed one.