• Title/Summary/Keyword: Out of Core Storage

Search Result 39, Processing Time 0.032 seconds

DEVELOPMENT OF THE ENIGMA FUEL PERFORMANCE CODE FOR WHOLE CORE ANALYSIS AND DRY STORAGE ASSESSMENTS

  • Rossiter, Glyn
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.489-498
    • /
    • 2011
  • UK National Nuclear Laboratory's (NNL's) version of the ENIGMA fuel performance code is described, including details of the development history, the system modelled, the key assumptions, the thermo-mechanical solution scheme, and the various incorporated models. The recent development of ENIGMA in the areas of whole core analysis and dry storage applications is then discussed. With respect to the former, the NEXUS code has been developed by NNL to automate whole core fuel performance modelling for an LWR core, using ENIGMA as the underlying fuel performance engine. NEXUS runs on NNL's GEMSTONE high performance computing cluster and utilises 3-D core power distribution data obtained from the output of Studsvik Scandpower's SIMULATE code. With respect to the latter, ENIGMA has been developed such that it can model the thermo-mechanical behaviour of a given LWR fuel rod during irradiation, pond cooling, drying, and dry storage - this involved: (a) incorporating an out-of-pile clad creep model for irradiated Zircaloy-4; (b) including the ability to simulate annealing out of the clad irradiation damage; (c) writing of additional post-irradiation output; (d) several other minor modifications to allow modelling of post-irradiation conditions.

An Out of Core Linear Direct Solution Method for Large Scale Structural Analysis (대규모 구조해석을 위한 보조기억장치 활용 선형 직접해법)

  • Kim, Min-Ki;Kim, Seung Jo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.445-452
    • /
    • 2014
  • This paper discusses the multifrontal direct solution method with out of core storage for large scale structural analysis in a limited computing resource. Large scale structural analysis requires huge amount of memory space and computation, so out of core solution method is needed in limited computing resource. In this research, out of core multifrontal solution algorithm which utilize the small size of physical memory and minimize the amount of access of low speed out of core storage is introduced. Three ideas, which are stack space in lower trianglar part of square factorization matrix, inverse stack data structure and selective data caching and recovery by data block size, are proposed.

Seismic Fragility Analysis of Base Isolated Liquid Storage Tank (면진 유체 저장 탱크의 지진취약도 분석)

  • Ahn, Sung-Moon;Choi, In-Kil;Choun, Young-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.453-460
    • /
    • 2005
  • In this study, the seismic fragility analysis of a base isolated condensate storage tank installed in the nuclear power plant. The condensate storage tank is safety related structure in a nuclear power plant. The failure of this tank affect significantly to the core damage frequency of the nuclear power plants. The seismic analysis of the liquid storage tank was performed by the simple calculation method and the dynamic time storage analysis method. The convective and impulsive fluid mass is modeled as added masses proposed by several researchers. To evaluate the effectiveness of the isolation system, the comparison of HCLPF and core damage frequencies in non-isolated and isolated cases are carried out. It can be found from the results that the seismic isolation system increases the seismic capacity of a condensate storage tank and decreases the core damage frequency significantly.

  • PDF

Experimental Study of Dynamic Response for Pilot LNG Storage Tank (파이롯트 LNG저장탱크의 동특성 실험연구)

  • Kim, Young-Kyun;Lee, Kang-Won;Hong, Seong-Ho;Kim, Ji-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.591-597
    • /
    • 2003
  • The demand of LNG in Korea has dramatically increased since it was first imported in 1986. Thus, more LNG storage tanks are required to meet the growing consumption of LNG. However the design, construction, and analysis of LNG storage facility need highly advanced technology compared to the general structures due to the fluid-structure interaction and the low temperature of LNG. Recently Korea Gas Corporation(KOGAS) constructed a pilot LNG storage tank, and it is in operation to develop and accumulate the core technology. As a part of those objects, the fundamental dynamic test for the pilot tank were performed. For this study, dynamic test were carried out and the dynamic characteristics of the pilot tank were verified and analyzed.

  • PDF

Domain Decomposition Strategy for Pin-wise Full-Core Monte Carlo Depletion Calculation with the Reactor Monte Carlo Code

  • Liang, Jingang;Wang, Kan;Qiu, Yishu;Chai, Xiaoming;Qiang, Shenglong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.635-641
    • /
    • 2016
  • Because of prohibitive data storage requirements in large-scale simulations, the memory problem is an obstacle for Monte Carlo (MC) codes in accomplishing pin-wise three-dimensional (3D) full-core calculations, particularly for whole-core depletion analyses. Various kinds of data are evaluated and quantificational total memory requirements are analyzed based on the Reactor Monte Carlo (RMC) code, showing that tally data, material data, and isotope densities in depletion are three major parts of memory storage. The domain decomposition method is investigated as a means of saving memory, by dividing spatial geometry into domains that are simulated separately by parallel processors. For the validity of particle tracking during transport simulations, particles need to be communicated between domains. In consideration of efficiency, an asynchronous particle communication algorithm is designed and implemented. Furthermore, we couple the domain decomposition method with MC burnup process, under a strategy of utilizing consistent domain partition in both transport and depletion modules. A numerical test of 3D full-core burnup calculations is carried out, indicating that the RMC code, with the domain decomposition method, is capable of pin-wise full-core burnup calculations with millions of depletion regions.

Changes in Vitamin U, Amino acid and Sugar Levels in Chinese Cabbages during Storage (배추 저장동안 비타민 U, 아미노산, 유리당 함량 변화)

  • Hong, Eun-Young;Kim, Gun-Hee
    • Food Science and Preservation
    • /
    • v.13 no.5
    • /
    • pp.589-595
    • /
    • 2006
  • Vitamin U (5-methylmethionine) levels of Chinese cabbages at $4^{\circ}C$ were investigated to establish its physiological characteristics and also amino acids and sugars levels to find out their relationship with vitamin U were determined The levels of vitamin U showed different from parts of Chinese cabbages. The highest value was shown in outward leaf in Wineter Pride (12.70 mg/100 g fresh wt.) and core leaf in 55 Days cultivars (18.60 mg/100 g fresh wt.). leaf pare were 1.7-9.0 times higher in vitamin U levels than those in midribs in both cultivars. levels of vitamin U in stored Chinese cabbages increased with storage time. Moreover, two cultivars used far this experiment showed different pattern during storage. In Winter Pride, vitamin U levels sharply increased in leaf and midrib of cote part during storage. This value reached about 2.5 times for leaf and 4 times for midrib compared to the levels of initial storage time in core part In 55 Days cultivars, outward leaf showed an increased level of vitamin U of 1.8 times compared to that of 1 month storage time. Methionine known as a precursor of vitamin U synthesis did not showed clear relationship with vitamin U levels. Methionine was either not detected or at negligibly low levels in Chinese cabbages during storage. Methionine may not play a role in an increase of vitamin U during storage of Chinese cabbages at $4^{\circ}C$. No clear relationship of free amino acids and soluble sugars for vitamin U accumulation during storage of Chinese cabbages was shown in this study.

Prismatic-core advanced high temperature reactor and thermal energy storage coupled system - A preliminary design

  • Alameri, Saeed A.;King, Jeffrey C.;Alkaabi, Ahmed K.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.248-257
    • /
    • 2020
  • This study presents an initial design for a novel system consisting in a coupled nuclear reactor and a phase change material-based thermal energy storage (TES) component, which acts as a buffer and regulator of heat transfer between the primary and secondary loops. The goal of this concept is to enhance the capacity factor of nuclear power plants (NPPs) in the case of high integration of renewable energy sources into the electric grid. Hence, this system could support in elevating the economics of NPPs in current competitive markets, especially with subsidized solar and wind energy sources, and relatively low oil and gas prices. Furthermore, utilizing a prismatic-core advanced high temperature reactor (PAHTR) cooled by a molten salt with a high melting point, have the potential in increasing the system efficiency due to its high operating temperature, and providing the baseline requirements for coupling other process heat applications. The present research studies the neutronics and thermal hydraulics (TH) of the PAHTR as well as TH calculations for the TES which consists of 300 blocks with a total heat storage capacity of 150 MWd. SERPENT Monte Carlo and MCNP5 codes carried out the neutronics analysis of the PAHTR which is sized to have a 5-year refueling cycle and rated power of 300 MWth. The PAHTR has 10 metric tons of heavy metal with 19.75 wt% enriched UO2 TRISO fuel, a hot clean excess reactivity and shutdown margin of $33.70 and -$115.68; respectively, negative temperature feedback coefficients, and an axial flux peaking factor of 1.68. Star-CCM + code predicted the correct convective heat transfer coefficient variations for both the reactor and the storage. TH analysis results show that the flow in the primary loop (in the reactor and TES) remains in the developing mixed convection regime while it reaches a fully developed flow in the secondary loop.

Dynamic Experiment for Mode Shape of Pilot LNG Storage Tank (Pilot LNG저장탱크의 모드 형상 파악을 위한 동특성 실험)

  • Lee Kangwon;Hong Seongho;Kim Young Kyun;Kim Ji Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.18-23
    • /
    • 2003
  • The demand of LNG in Korea has dramatically increased since it was first imported in 1986. Thus, more LNG storage tanks are required to meet the growing consumption of LNG. However the design, construction, and analysis of LNG storage facility need highly advanced technology compared to the general structures due to the fluid-structure interaction and the low temperature of LNG. Recently Korea Gas Corporation(KOGAS) constructed a pilot LNG storage tank, and it is in operation to develop and accumulate the core technology. As a part of those objects, the fundamental dynamic test for the pilot tank were performed. For this study, dynamic test were carried out and the dynamic characteristics of the pilot tank were verified and analyzed.

  • PDF

액화석유가스(LPG) 지하저장기지에서의 TSP(Tunnel Seismic Prediction)탐사

  • Cha, Seong-Su
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.75-86
    • /
    • 2002
  • A TSP(Tunnel Seismic Prediction) survey which is modified VSP(Vertical Seismic Profiling) survey applied in tunnel was carried out at Pyongtaek and Incheon liquefied petroleum gas(LPG) storage cavern during excavation. The TSP survey in Pyongtaek LPG storage cavern which is located below Namyangho was performed to confirm the location and orientation of the fault detected at pre-investigation stage. The TSP survey was carried out in access tunnel, construction tunnel, and watercurtain tunnel to characterize 3 dimensional figure of the fault. The results of TSP survey are compared four in vestigation boreholes drilled in shelter of access tunnel. The fault was also detected by borehole survey and the location was coincided with the result of TSP survey. Depending on the result of TSP survey and core logging, the design such as cavern layout and length was changed. Another TSP survey was performed in Incheon LPG storage cavern which is located below sea. Because of poor geological information at pre-investigation stage and suffering from heavy leakage of groundwater, the TSP survey to detect fracture zone was carried out. The support and grouting design was reflected by the result of TSP survey.

  • PDF

Domain decomposition for GPU-Based continuous energy Monte Carlo power reactor calculation

  • Choi, Namjae;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2667-2677
    • /
    • 2020
  • A domain decomposition (DD) scheme for GPU-based Monte Carlo (MC) calculation which is essential for whole-core depletion is introduced within the framework of the modified history-based tracking algorithm. Since GPU-offloaded MC calculations suffer from limited memory capacity, employing DDMC is inevitable for the simulation of depleted cores which require large storage to save hundreds of newly generated isotopes. First, an automated domain decomposition algorithm named wheel clustering is devised such that each subdomain contains nearly the same number of fuel assemblies. Second, an innerouter iteration algorithm allowing overlapped computation and communication is introduced which enables boundary neutron transactions during the tracking of interior neutrons. Third, a bank update scheme which is to include the boundary sources in a way to be adequate to the peculiar data structures of the GPU-based neutron tracking algorithm is presented. The verification and demonstration of the DDMC method are done for 3D full-core problems: APR1400 fresh core and a mock-up depleted core. It is confirmed that the DDMC method performs comparably with the standard MC method, and that the domain decomposition scheme is essential to carry out full 3D MC depletion calculations with limited GPU memory capacities.