• 제목/요약/키워드: Oubain

검색결과 5건 처리시간 0.026초

Comparison of the Determinants in the Differences in Force-Frequency Relationships between Rat and Rabbit Left Atria

  • Ko, Chang-Mann;Kim, Soon-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권5호
    • /
    • pp.417-425
    • /
    • 2000
  • The underlying mechanism commonly applicable for both the positive and negative force-frequency relationships (FFR) was pursued in left atria (LA) of rat and rabbit. The species differences in the roles of $Na^+/Ca^{2+}$ exchanger and sarcoplasmic reticulum (SR), which are major intracellular $Ca^{2+}$ regulatory mechanisms in the heart, were examined in the amplitude accommodation to the frequency that changed from 3 Hz to the variable test frequencies for 5 minutes in the electrically field stimulated left atria (LA) of rat and rabbit. Norepinephrine strongly increased the frequency-related amplitude accommodation in both of rat and rabbit LA, while monensin, oubain or the reduced $Na^+$ and 0 mM $Ca^{2+}$ containing Tyrode solution increased the frequency-related amplitude accommodation only in the rabbit LA. Monenisn was also able to increase the frequency-related amplitude accommodation only in 1-day old rat LA but not in 4-week old rat LA that had 75% less $Na^+/Ca^{2+}$ exchanger with 97% higher SR than 1-day old rat LA. Taken together, it is concluded that the differences in the prevalence between myocardial $Na^+/Ca^{2+}$ exchanger and SR in the amplitude accommodation to the frequency-change determine the difference in the FFR between rat and rabbit heart.

  • PDF

Interactions of Cationic Drugs and Cardiac Glycosides at the Hepatic Uptake Level: Studies in the Rat in Vivo, Isolated Perfused Rat Liver, Isolated Rat Hepatocytes and Oocytes Expressing oatp2

  • Dirk K.F.Meijer;Jessica E.van Montfoort
    • Archives of Pharmacal Research
    • /
    • 제25권4호
    • /
    • pp.397-415
    • /
    • 2002
  • This paper deals with a crucial mechanism for interaction of basic drugs and cardiac glycosides at the hepatic uptake level. Available literature data is provided and new material is presented to picture the differential transport inhibition of bulky (type2) cationic drugs by a number of cardiac glycosides in rat liver. It is shown that the so called organic anion transporting peptide 2 (oatp2) is the likely interaction site: differential inhibition patterns as observed in oocytes expressing oatp2, could be clearly identified also in isolated rat hepatocytes, isolated perfused rat liver and the rat in vivo. The anticipation of transport interactions at the hepatic clearance level should be based on data on the relative affinities of interacting substrates for the transport systems involved along with knowledge on the pharmacokinetics of these agents as well as the chosen dose regimen in the studied species. This review highlights the importance of multispecific tranporter systems such as OATP, accommodating a broad spectrum of organic compounds of various charge, implying potential transport interactions that can affect body distribution and organ clearance.

Studies on Digitalis Receptor Desensitization in Rat Ventricle

  • Lee, Shin-Woong-;Jang, Tae-Soo
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.301-301
    • /
    • 1994
  • $^3$H〕Ouabain binding parameters(K$\_$D/ and B$\_$max/,) in homogenates prepared fpom control rat ventricular strip and Langendorff preparations which were not previously exposed to ouabain were compared to those in homogenates from ventricular strip and Langendorff preparations that had been first exposed to a complete ouabain dose-response curve(10$\^$-7/M to 10$\^$-4/ M). In rat ventricular strips and Langendorff perfused rat heart preparations, cumulative dose-response cruves of ouabain revealed biphasic positive inotropic effects, a "low-dose" and a "high-dose" effect with ED$\_$50/ values of 0.5${\mu}$M and 35${\mu}$M ouabain, respectively- The "low-dose" effect in rat ventricular strips disappeared or was diminished significantly when the ouabain dose-response curve wag repeated after the washout of the effects of the first curve, whereas the maximal "high-dose" effect was identical in both exposures to oubain. However, there was no change in the "low-dose" effects in both sets of the Langendorff perfused hearts. The contractile activity of the pre-exposed strips did not indicate the presence of residual ouabain since their basal contractile force was decreased 10% compared to initial control. 〔$^3$H〕Ouabain binding parameters, K$\_$D/ and B$\_$max/, were not changed comparing homogenate of control ventricular strips with that of strips pre-exposed to ouabain. These results suggest that digitalis receptor desensitization in the rat ventricular strip may due to the change of post-receptor events induced by ouabain binding to a high affinity site(${\alpha}$$_2$ isoform).

  • PDF

Effect of Ginseng Saponin on the $Na^{+}$, $K^{+}$-ATPase of Dog Cardiac Sarcolemma

  • Lee, Shin-Woong;Lee, Jeung-Soo;Kim, Young-Hie;Jin, Kap-Duck
    • Archives of Pharmacal Research
    • /
    • 제9권1호
    • /
    • pp.29-38
    • /
    • 1986
  • The effects of ginseng saponins on the sarcolemmal $Na^{+}$, $K^{+}$-ATPase were compared to gypsophila saponin, sodium dodecylsulfate (SDS), and Triton X-100 to elucidate whether the effects are due to the membrane distruption, using a highly enriched preparation of cardiac sarcolemma prepared from dog ventricular myocardium. About 26% and 29% of vesicles in the preparation, enriched in ouabain-sensitive $Na^{+}$, $K^{+}$-ATP ase, $\beta$-adrenergic and muscarinic receptors are rightside-out and inside-out orientation, respectively. Ginseng saponins (triol>total> diol) inhibited $Na^{+}$, $K^{+}$-ATP ase activity, $Na^{+}$, $K^{+}$-ATPase activity and [$^{3}$H]ouabain binding of sarcolemmal vesicles. However, gypsophila saponin, SDS (0.4$\mu$g/$\mu$g protein) and Triton X-100 (0.6 $\mu$g/$\mu$g protein) caused about 1.35 and 1.40-fold increase in $Na^{+}$, $K^{+}$-ATPase activity and [$^{3}$H] oubain binding, respectively. Especially, the activating effect of gypsophila saponin on membrane Na+, K+ ATPase was detected at gypsophila saponin to sarcolemmal protein ratios as high as 100. Low dose of ginseng saponin (3$\mu$g/$\mu$g protein) decreased the phosphorylation sites and the concentration of ouabain binding sites (Bmax) without affecting the turnover number and affinity for ouabain binding, while gypsophila saponin, SDS(0.4 ug/ug protein), ahd Triton X-100 (0.6$\mu$g/$\mu$g protein) increased the Bmax. The results suggest that ginseng saponins cause a decrease in the number of active sites by interacting directly with $Na^{+}$, $K^{+}$-ATPase before disruption of membrane barriers of sarcolemmal vesicles.

  • PDF

쥐 심실에서 Digitalis Receptor Desensitization에 관한 연구 (Studies on Digitalis Receptor Desensitization in Rat Ventricle)

  • 이신웅;이정수;장태수
    • Biomolecules & Therapeutics
    • /
    • 제2권2호
    • /
    • pp.114-119
    • /
    • 1994
  • [$^3$H]Ouabain binding parameters ( $K_{D}$ and $B_{max}$) to control rat ventricular strips and Langendorff preparations which were not previously exposed to ouabain were compared with those to both preparations that had been first exposed to a complete ouabain dose range of dose-response curve (10$^{-8}$ to 10$^{4}$M). In rat ventricular strips and Langendorff perfused heart preparations, cumulative dose-response curves of ouabain revealed biphasic positive inotropic effects, a "low-dose" effect and a "high-dose" effect with E $d_{50}$ values of 0.5 $\mu$M and 35 $\mu$M ouabain, respectively. The "low-dose" effect in ventricular strip disappeared or was diminished significantly when the ouabain dose-response curve was repeated after the washout of the effects of the first dose-response curve, whereas there were no significant differences in the maximal "high-dose"effect in both exposures to oubain. However, both of the control and ouabain-preexposed Langendorff perfused hearts revealed the same low-dose effects. The $K_{D}$ value for [$^3$H] ouabain binding and the ouabain binding site concentration ( $B_{max}$) estimated by [$^3$H]ouabain displacement assay in control preparations were 230 nM and 2 pmol/mg protein, respectively. [$^3$H]Ouabain binding parameters were not changed by repeated exposure to high concentrations of ouabain. These results suggest that digitalis receptor desensitization in the rat ventricular strip may due to the change of post-receptor events induced by ouabain binding to a high affinity site ($\alpha$$_2$isoform).).).).).

  • PDF