• Title/Summary/Keyword: Otsu 방법

Search Result 62, Processing Time 0.018 seconds

Improved FCM Clustering Image Segmentation (개선된 FCM 클러스터링 영상 분할)

  • Lee, Kwang-Kyug
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.127-131
    • /
    • 2020
  • Fuzzy C-Means(FCM) algorithm is frequently used as a representative image segmentation method using clustering. FCM divides the image space into cluster regions with similar pixel values, which requires a lot of segmentation time. In particular, the processing speed problem for analyzing various patterns of the current users of the web is more important. To solve this speed problem, this paper proposes an improved FCM (Improved FCM : IFCM) algorithm for segmenting the image into the Otsu threshold and FCM. In the proposed method, the threshold that maximizes the variance between classes of Otsu is determined, applied to the FCM, and the image is segmented. Experiments show that IFCM improves performance by shortening image segmentation time compared to conventional FCM.

Multilevel Threshold Selection Method (다중 임계값 결정기법)

  • Seo, Seok-Tae;Lee, In-Geun;Gwon, Sun-Hak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.283-286
    • /
    • 2007
  • 임계값을 이용한 영상 분할은 대표적인 영상 분할 기법으로 Otsu의 임계값 결정법, Fuzzy 엔트로피를 이용한 H&W의 기법 및 Clustering을 이용한 Kwon의 기법 등 많은 방법이 있다. 대부분의 임계값 결정 기법은 영상에서 얻어진 빈도수 히스토그램의 분석을 통해서 임계값을 결정한다. 특히 Otsu의 임계값 결정 기법은 빈도수 히스토그램의 분산을 최대화하는 방법으로 임계값을 결정하는 빈도수 히스토그램에 기반한 대표적 기법이다. 하지만 영상 기술이 발전함에 따라서 하나의 임계값으로부터 영상을 이진화 하는 기법은 효용성이 떨어지고 있다. 따라서 다중의 임계값을 결정하는 효과적인 방법이 필요하다. 본 논문에서는 그레이 레벨간의 관계성을 파악하고 이러한 관계성으로부터 다중의 임계값을 결정하는 기법을 제안한다. 제안된 기법의 효용성은 모의실험에서 다중 임계값을 사용한 분할영상을 통해서 보인다.

  • PDF

A shot change detection algorithm based on frame segmentation and object movement (프레임 블록화와 객체의 이동을 이용한 샷 전환 탐지 알고리즘)

  • Kim, Seung-Hyun;Hwang, Doosung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.21-29
    • /
    • 2015
  • This paper proposes a shot change detection algorithm by using frame segmentation and the object changes among moving blocks. In order to detect the rapid moving changes of objects between two consecutive frames, the moving blocks on the diagonal are defined, and their histograms are calculated. When a block of the current frame is compared to the moving blocks of the next frame, the block histograms are used and the threshold of a shot change detection is automatically adjusted by Otsu's threshold method. The proposed algorithm was tested for the various types of color or gray videos such as films, dramas, animations, and video tapes in National Archives of Korea. The experimental results showed that the proposed algorithm could enhance the detection rate when compared to the studied methods that use brightness, histogram, or segmentation.

A Fast Thresholding Method For Pattern Matching (패턴매칭을 위한 고속 스레쉬홀딩법)

  • Li, Zhe-Xue;Kim, Sang-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.126-128
    • /
    • 2006
  • For pattern matching, an object image should be segmented and analyzed for the first time. Thresholding is a fundamental approach to segmentation that utilizes a significant degree of pixel popularity or intensity. Otsu's thresholding is one of the most veil-known methods proposed in the literature. However, the method has a disadvantage of repeatedly searching the optimal thresholds for the entire region. To overcome this problem, a number of methods have been proposed. In this paper, we propose a simple and fast thresholding method of finding multi-level threshold values by extending the Otsu's method. Our experimental results for the benchmak images show a possibility that the proposed method could be used efficiently for pattern matching.

  • PDF

Development of a Method for Tracking Sandbar Formation by Weir-Gate Opening Using Multispectral Satellite Imagery in the Geumgang River, South Korea (금강에서 다분광 위성영상을 이용한 보 운영에 따른 모래톱 형성 추적 방법의 개발)

  • Cheolho Lee;Kang-Hyun Cho
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.135-142
    • /
    • 2023
  • A various technology of remote sensing and image analysis are applied to study landscape changes and their influencing factors in stream corridors. We developed a method to detect landscape changes over time by calculating the optical index using multispectral images taken from satellites at various time points, calculating the threshold to delineate the boundaries of water bodies, and creating binarized maps into land and water areas. This method was applied to the upstream reach of the weirs in the Geumgang River to track changes in the sandbar formed by the opening of the weir gate. First, we collected multispectral images with a resolution of 10 m × 10 m taken from the Sentinel-2 satellite at various times before and after the opening of the dam in the Geumgang River. The normalized difference water index (NDWI) was calculated using the green light and near-infrared bands from the collected images. The Otsu's threshold of NDWI calculated to delineate the boundary of the water body ranged from -0.0573 to 0.1367. The boundary of the water area determined by remote sensing matched the boundary in the actual image. A map binarized into water and land areas was created using NDWI and the Otsu's threshold. According to these results of the developed method, it was estimated that a total of 379.7 ha of new sandbar was formed by opening the three weir floodgates from 2017 to 2021 in the longitudinal range from Baekje Weir to Daecheong Dam on the Geumgang River. The landscape detection method developed in this study is evaluated as a useful method that can obtain objective results with few resources over a wide spatial and temporal range.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

Determing intensity value of characters and backgrounds on caption (캡션 내 문자와 배경의 명암값 결정)

  • An, Kwon-Jae;Kim, Gye-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.125-127
    • /
    • 2010
  • 본 논문에서는 동영상에서 비교적 단일 색상의 배경과 문자를 갖는 캡션을 문자인식을 위하여 문자와 배경간의 명암값 결정에 관한 내용이다. 먼저 캡션에 대해 그레이 스케일로 전환을 한 후, Otsu 방법[1]을 이용하여 이진화를 수행한다. 이 후 이진화 영상에서 흰색영역 검은색영역에 대해 각각 최대 내접 정사각형을 산출한다. 다음으로 각각의 영역에서 산출된 최대 내접 정사각형의 분산의 대소를 비교하여 문자영역과 배경영역을 결정한다. 이후 전역적인 잡음을 제거하기 문자영역에 대해 Otsu 방법을 이용하여 최종 문자영역을 결정한다. 제안된 방법의 문자영역의 명암값 결정 정확도는 약 99%로 매우 우수한 성능을 보였다.

  • PDF

Threshold Selection Method in Gray Images Based on Interval-Valued Fuzzy Sets (구간값 퍼지집합을 이용한 그레이 영상에서의 임계값 선택방법)

  • Son, Chang-S.;Chung, Hwan-M.;Seo, Suk-T.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.443-450
    • /
    • 2007
  • In this paper, we propose a novel threshold selection method based on statistical information on gray-levels of given images and interval-valued fuzzy sets. In the proposed threshold selection method, the interval-valued fuzzy set is used to represent more definitely the relationship between a pixel and its belonging region, that is, the object and the background. Also the statistical information on gray-level is used to determine the rules and partitions of interval-valued fuzzy sets. To show the validity of the proposed method, we compared the performance of the proposed with those of conventional methods such as Otsu's method, Huang and Wang's method applied to 5 test images with various types of histograms.

IR Image Segmentation using GrabCut (GrabCut을 이용한 IR 영상 분할)

  • Lee, Hee-Yul;Lee, Eun-Young;Gu, Eun-Hye;Choi, Il;Choi, Byung-Jae;Ryu, Gang-Soo;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.260-267
    • /
    • 2011
  • This paper proposes a method for segmenting objects from the background in IR(Infrared) images based on GrabCut algorithm. The GrabCut algorithm needs the window encompassing the interesting known object. This procedure is processed by user. However, to apply it for object recognition problems in image sequences. the location of window should be determined automatically. For this, we adopted the Otsu' algorithm for segmenting the interesting but unknown objects in an image coarsely. After applying the Otsu' algorithm, the window is located automatically by blob analysis. The GrabCut algorithm needs the probability distributions of both the candidate object region and the background region surrounding closely the object for estimating the Gaussian mixture models(GMMs) of the object and the background. The probability distribution of the background is computed from the background window, which has the same number of pixels within the candidate object region. Experiments for various IR images show that the proposed method is proper to segment out the interesting object in IR image sequences. To evaluate performance of proposed segmentation method, we compare other segmentation methods.

Moving Object Detection using Gaussian Pyramid based Subtraction Images in Road Video Sequences (가우시안 피라미드 기반 차영상을 이용한 도로영상에서의 이동물체검출)

  • Kim, Dong-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5856-5864
    • /
    • 2011
  • In this paper, we propose a moving object detection method in road video sequences acquired from a stationary camera. Our proposed method is based on the background subtraction method using Gaussian pyramids in both the background images and input video frames. It is more effective than pixel based subtraction approaches to reduce false detections which come from the mis-registration between current frames and the background image. And to determine a threshold value automatically in subtracted images, we calculate the threshold value using Otsu's method in each frame and then apply a scalar Kalman filtering to the threshold value. Experimental results show that the proposed method effectively detects moving objects in road video images.